Skip to main content
Log in

The relative roles of DNA damage induced by UVA irradiation in human cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

UVA light (320-400 nm) represents approximately 95% of the total solar UV radiation that reaches the Earth’s surface. UVA light induces oxidative stress and the formation of DNA photoproducts in skin cells. These photoproducts such as pyrimidine dimers (cyclobutane pyrimidine dimers, CPDs, and pyrimidine (6-4) pyrimidone photoproducts, 6-4PPs) are removed by nucleotide excision repair (NER). In this repair pathway, the XPA protein is recruited to the damage removal site; therefore, cells deficient in this protein are unable to repair the photoproducts. The aim of this study was to investigate the involvement of oxidative stress and the formation of DNA photoproducts in UVA-induced cell death. In fact, similar levels of oxidative stress and oxidised bases were detected in XP-A and NER-proficient cells exposed to UVA light. Interestingly, CPDs were detected in both cell lines; however, 6-4PPs were detected only in DNA repair-deficient cells. XP-A cells were also observed to be significantly more sensitive to UVA light compared to NER-proficient cells, with an increased induction of apoptosis, while necrosis was similarly observed in both cell lines. The induction of apoptosis and necrosis in XP-A cells using adenovirus-mediated transduction of specific photolyases was investigated and we confirm that both types of photoproducts are the primary lesions responsible for inducing cell death in XP-A cells and may trigger the skin-damaging effects of UVA light, particularly skin ageing and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UV:

Ultraviolet

NER:

Nucleotide excision repair

CPD:

Cyclobutane pyrimidine dimer

6-4PP:

Pyrimidine (6-4) pyrimidone photoproduct

FBS:

Fetal bovine serum

DSB:

Double strand break

PBS:

Phosphate-buffered saline solution

SSB:

Single-strand break

References

  1. J. E. Frederick, H. E. Snell, E. K. Haywood, Solar ultraviolet radiation at the Earth’s surface, Photochem. Photobiol., 1989, 50, 443–450.

    Article  CAS  Google Scholar 

  2. J. C. van der Leun, The ozone layer, Photodermatol. Photoimmunol. Photomed., 2004, 20, 159–162.

    Article  PubMed  Google Scholar 

  3. M. Norval, R. M. Lucas, A. P. Cullen, F. R. de Gruijil, J. Longstreth, Y. Takizawa, J. C. van der Leun, The human health effects of ozone depletion and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, 199–225.

    Article  CAS  PubMed  Google Scholar 

  4. R. P. Rastogi, Richa, A. Kumar, M. B. Tyagi, R. P. Sinha, Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair, J. Nucleic Acids, 2010, 2010, 1–32.

    Article  CAS  Google Scholar 

  5. G. P. Pfeifer, A. Besaratinia, UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer, Photochem. Photobiol. Sci., 2012, 11, 90–97.

    Article  CAS  PubMed  Google Scholar 

  6. J. R. Mitchell, J. H. Hoeijmakers, L. J. Niedernhofer, Divide and conquer: nucleotide excision repair battles cancer and ageing, Curr. Opin. Cell Biol., 2003, 15, 232–240.

    Article  CAS  PubMed  Google Scholar 

  7. H. L. Lo, S. Nakajima, L. Ma, B. Walter, A. Yasui, D. W. Ethell, L. B. Owen, Differentiation biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest, BMC Cancer, 2005, 5, 135–142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. L. F. Z. Batista, B. Kaina, R. Meneghini, C. F. M. Menck, How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis, Mutat. Res., 2009, 681, 197–208.

    Article  CAS  PubMed  Google Scholar 

  9. A. Besaratinia, T. W. Synold, H. H. Chen, C. Chang, B. Xi, A. D. Riggs, G. P. Pfeifer, DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10058–10063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. G. P. Pfeifer, Y. H. You, A. Besaratinia, Mutations induced by ultraviolet light, Mutat. Res., 2005, 571, 19–31.

    Article  CAS  PubMed  Google Scholar 

  11. G. M. Halliday, J. Cadet, It’s all about position: the basal layer of human epidermis is particularly susceptible to different types of sunlight-induced DNA damage, J. Invest. Dermatol., 2012, 132, 263–267.

    Article  CAS  Google Scholar 

  12. E. Smith, F. Kiss, R. M. Porter, A. V. Anstey, A review of UVA-mediated photosensitivity disorders, Photochem. Photobiol. Sci., 2012, 11, 199–206.

    Article  CAS  PubMed  Google Scholar 

  13. J. Cadet, T. Douk, J. L. Ravanat, P. Di Mascio, Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation, Photochem. Photobiol. Sci., 2009, 8, 903–911.

    Article  CAS  PubMed  Google Scholar 

  14. J. Cadet, T. Douk, Oxidatively generated damage to DNA by UVA radiation in cells and human skin, J. Invest. Dermatol., 2011, 131, 1005–1007.

    Article  CAS  PubMed  Google Scholar 

  15. H. Swalwell, J. Latimer, R. M. Haywood, M. A. Birch-Machin, Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells, Free Radicals Biol. Med., 2012, 52, 626–634.

    Article  CAS  Google Scholar 

  16. C. S. Foote, Mechanisms of photosensitized oxidation, Science, 1968, 162, 963–970.

    Article  CAS  PubMed  Google Scholar 

  17. C. S. Foote, Definition of Type I and Type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  PubMed  Google Scholar 

  18. A. Moysan, I. Marquis, F. Gaboriau, R. Santus, L. Dubertret, P. Morliere, Ultraviolet A-induced lipid peroxidation and antioxidant defense systems in cultured human skin fibroblasts, J. Invest. Dermatol., 1993, 100, 692–698.

    Article  CAS  PubMed  Google Scholar 

  19. A. J. Ridley, J. R. Whiteside, T. J. McMillan, S. L. Allinson, Cellular and sub-cellular responses to UVA in relation to carcinogenesis, Int. J. Radiat. Biol., 2009, 85, 177–195.

    Article  CAS  PubMed  Google Scholar 

  20. P. M. Girard, M. Pozzebon, F. Delacote, T. Douki, V. Smirnova, E. Sage, Inhibition of S-phase progression triggered by UVA-induced ROS does not require a functional DNA damage checkpoint response in mammalian cells, DNA Repair, 2008, 7, 1500–1516.

    Article  CAS  PubMed  Google Scholar 

  21. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi, T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.

    Article  CAS  PubMed  Google Scholar 

  22. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry., 2003, 42, 9221–9226.

    Article  CAS  PubMed  Google Scholar 

  23. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Jiang, M. Rabbi, M. Kim, C. Ke, W. Lee, R. L. Clark, P. A. Mieczkowski, P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P. M. Girard, S. Francesconi, M. Pozzebon, D. Graindorge, P. Rochette, R. Drouin, E. Sage, UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes, J. Phys.: Conf. Ser., 2011, 261, 012002.

    Google Scholar 

  26. A. P. Schuch, R. da Silva Galhardo, K. M. de Lima-Bessa, N. J. Schuch, C. F. Menck, Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation, Photochem. Photobiol. Sci., 2009, 8, 111–120.

    Article  CAS  PubMed  Google Scholar 

  27. J. S. Taylor, H. F. Lu, J. J. Kotyk, Quantitative conversion of the (6-4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight, Photochem. Photobiol., 1990, 51, 161–167.

    Article  CAS  PubMed  Google Scholar 

  28. A. Yasui, A. P. Eker, S. Yasuhira, H. Yajima, T. Kobayashi, M. Takao, A. Oikawa, A new class of DNA photolyases present in various organisms including aplacental mammals, EMBO J., 1994, 13, 6143–6151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Tanaka, S. Nakajima, M. Ihara, T. Matsunaga, O. Nikaido, K. Yamamoto, Effects of photoreactivation of cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts on ultraviolet mutagenesis in SOS-induced repair-deficient Escherichia coli, Mutagenesis, 2001, 16, 1–6.

    Article  CAS  PubMed  Google Scholar 

  30. C. F. Menck, Shining a light on photolyases, Nat. Genet., 2002, 32, 338–339.

    Article  CAS  PubMed  Google Scholar 

  31. R. M. A. Costa, V. Chiganças, R. Galhardo, H. Carvalho, C. F. Menck, The eukaryotic nucleotide excision repair pathway, Biochimie, 2003, 85, 1083–1099.

    Article  CAS  PubMed  Google Scholar 

  32. G. A. Garinis, G. T. J. van der Horst, J. Vijg, J. H. J. Hoeijmakers, DNA damage and ageing: new-age ideas for an age-old problem, Nat. Cell Biol., 2008, 10, 1241–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. E. Cleaver, E. T. Lam, I. Revet, Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity, Nat. Genet., 2009, 10, 756–768.

    Article  CAS  Google Scholar 

  34. K. M. Lima-Bessa, M. G. Armelini, V. Chiganças, J. F. Jacysyn, G. P. Amarante-Mendes, A. Sarasin, C. F. Menck, CPDs and 6-4PPs play different roles in UV induced cell death in normal and NER-deficient human cells, DNA Repair, 2008, 7, 303–312.

    Article  PubMed  CAS  Google Scholar 

  35. V. Chiganças, A. Sarasin, C. F. Menck, CPD-photolyase adenovirus-mediated gene transfer in normal and DNA-repair-deficient human cells, J. Cell Sci., 2004, 15, 3579–3592.

    Article  CAS  Google Scholar 

  36. A. L. Pelegrini, D. J. Moura, B. L. Benner, P. F. Ledur, G. P. Maques, J. A. P. Henriques, J. Saffi, G. Lenz, Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest, Mutagenesis, 2010, 25, 447–454.

    Article  CAS  PubMed  Google Scholar 

  37. M. Müller, T. Carell, Structural biology of DNA photolyases and cryptochromes, Curr. Opin. Struct. Biol., 2009, 19, 277–285.

    Article  PubMed  CAS  Google Scholar 

  38. N. S. Agar, G. M. Halliday, R. S. Barnetson, H. N. Ananthaswamy, M. Wheeler, A. M. Jones, The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4954–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. X. X. Huang, F. Bernerd, G. M. Halliday, Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin, Am. J. Pathol., 2009, 174, 1534–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E. Sage, P. M. Girard, S. Francesconi, Unraveling UVA-induced mutagenesis, Photochem. Photobiol. Sci., 2011, 11, 74–80.

    Article  PubMed  Google Scholar 

  41. K. Wischermann, S. Popp, S. Moshir, K. Scharfetter-Kochanek, M. Wlaschek, F. de Gruijl, W. Hartschuh, R. Greinert, B. Volkmer, A. Faust, A. Rapp, P. Schmezer, P. Boukamp, UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes, Oncogene, 2008, 27, 4269–4280.

    Article  CAS  PubMed  Google Scholar 

  42. R. Greinart, B. Volkmer, S. Henning, E. W. Breitbart, K. O. Greulich, M. C. Cardoso, A. Rapp, UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages, Nucleic Acids Res., 2012, 40, 10263–10273.

    Article  CAS  Google Scholar 

  43. J. L. Rizzo, J. Dunn, A. Rees, T. M. Runger, No formation of DNA double-strand breaks and activation of recombination repair with UVA, J. Invest. Dermatol., 2011, 131, 1139–1148.

    Article  CAS  PubMed  Google Scholar 

  44. G. A. Garinis, J. R. Mitchell, M. J. Moorhouse, K. Hanada, H. de Waard, D. Vandeputte, J. Jans, K. Brand, M. Smid, P. J. van der Spek, J. H. J. Hoeijmakers, R. Kanaar, G. T. J. van der Horst, Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks, EMBO J., 2005, 24, 3952–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. G. T. Wondrak, M. K. Jacobson, E. L. Jacobson, Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection, Photochem. Photobiol. Sci., 2006, 5, 215–237.

    Article  CAS  PubMed  Google Scholar 

  46. A. Valencia, I. E. Kochevar, Ultraviolet A induces apoptosis via oxygen reactive species in a model for Smith-Lemli-Optiz syndrome, Free Radicals Biol. Med., 2006, 40, 641–650.

    Article  CAS  Google Scholar 

  47. A. Valencia, I. E. Kochevar, NOX-1 base NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes, J. Invest. Dermatol., 2008, 128, 214–222.

    Article  CAS  PubMed  Google Scholar 

  48. M. A. Birch-Machin, H. Swawell, How mitochondria record the effects of UV exposure and oxidative stress using human skin as a model tissue, Mutagenesis, 2010, 25, 101–107.

    Article  CAS  PubMed  Google Scholar 

  49. J. L. Ravanat, T. Douki, J. Cadet, Direct and indirect effects of UV radiation on DNA and its components, J. Photochem. Photobiol., B, 2001, 63, 88–102.

    Article  CAS  Google Scholar 

  50. P. H. Clingen, C. F. Arlett, L. Roza, T. Mori, O. Nikaido, M. H. Green, Induction of cyclobutane pyrimidine dimers, pyrimidine(6-4)pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells, Cancer Res., 1995, 55, 2245–2248.

    CAS  PubMed  Google Scholar 

  51. D. Perdiz, P. Grof, M. Mezzina, O. Nikaido, E. Moustacch, E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis, J. Biol. Chem., 2000, 275, 26732–26742.

    Article  CAS  PubMed  Google Scholar 

  52. A. Tewari, R. P. Sarkany, A. R. Young, UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo, J. Invest. Dermatol., 2012, 132, 394–400.

    Article  CAS  PubMed  Google Scholar 

  53. F. Thoma, Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair, EMBO J., 1999, 18, 6585–6598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L. Riou, E. Eveno, A. van Hoffen, A. A. van Zeeland, A. Sarasin, L. H. Mullenders, Differential repair of the two major UV-induced photolesions in trichothiodystrophy fibroblasts, Cancer Res., 2004, 64, 889–894.

    Article  CAS  PubMed  Google Scholar 

  55. R. Young, C. S. Potten, O. Nikaido, P. G. Parsons, J. Boenders, J. M. Ramsden, C. A. Chanswick, Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers, J. Invest. Dermatol., 1998, 111, 936–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Frederico Martins Menck.

Additional information

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp50023c

‡ These authors contributed equally to this manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortat, B., Garcia, C.C.M., Quinet, A. et al. The relative roles of DNA damage induced by UVA irradiation in human cells. Photochem Photobiol Sci 12, 1483–1495 (2013). https://doi.org/10.1039/c3pp50023c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50023c

Navigation