Skip to main content
Log in

The growing family of photoactive yellow proteins and their presumed functional roles

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

For several years following the discovery and characterization of the first PYP, from Halorhodospira halophila, it was thought that this photoactive protein was quite unique, notwithstanding the isolation of two additional examples in rapid succession. Mainly because of genomic and metagenomic analyses, we have now learned that more than 140 PYP genes occur in a wide variety of bacteria and metabolic niches although the protein has not been isolated in most cases. The amino acid sequences and physical properties permit their organization into at least seven groups that are also likely to be functionally distinct. Based upon action spectra and the wavelength of maximum absorbance, it was speculated nearly 20 years ago but never proven that Hr. halophila PYP was involved in phototaxis. Nevertheless, in only one instance has the functional role and interaction partner for a PYP been experimentally proven, in Rs. centenum Ppr. Genetic context is one of several types of evidence indicating that PYP is potentially involved in a number of diverse functional roles. The interaction with other sensors to modulate their activity stands out as the single most prominent role for PYP. In this review, we have attempted to summarize the evidence for the functional roles and interaction partners for some 26 of the 35 named species of PYP, which should be considered the basis for further focused molecular and biochemical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Meyer, Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium, Ectothiorhodospira halophila, Biochim. Biophys. Acta, 1985, 806, 175–183.

    Article  CAS  PubMed  Google Scholar 

  2. T. E. Meyer, E. Yakali, M. A. Cusanovich and G. Tollin, Properties of a water soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin, Biochemistry, 1987, 26, 418–423.

    Article  CAS  PubMed  Google Scholar 

  3. M. A. Cusanovich and T. E. Meyer, Photoactive yellow protein: A prototypic PAS domain sensory protein and development of a common signaling mechanism, Biochemistry, 2003, 42, 4759–4770.

    Article  CAS  PubMed  Google Scholar 

  4. W. W. Sprenger, W. D. Hoff, J. P. Armitage and K. J. Hellingwerf, The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein, J. Bacteriol., 1993, 175, 3096–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Z. Y. Jiang, L. R. Swem, B. G. Rushing, S. Devanathan, G. Tollin and C. E. Bauer, Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes, Science, 1999, 285, 406–409.

    Article  CAS  PubMed  Google Scholar 

  6. J. E. Berleman, B. M. Hasselbring and C. E. Bauer, Hypercyst mutants in Rhodospirillum centenum identify regulatory loci involved in cyst cell differentiation, J. Bacteriol., 2004, 186, 5834–5841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. Y. Jiang and C. E. Bauer, Component of the Rhodospirillum centenum photosensory apparatus with structural and functional similarity to methyl-accepting chemotaxis protein chemoreceptors, J. Bacteriol., 2001, 183, 171–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Kreutel, A. Kuhn and D. Kiefer, The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxic signaling pathway, BMC Microbiol., 2010, 10, 281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. J. A. Kyndt, T. E. Meyer and M. A. Cusanovich, Photoactive yellow protein, bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteria, Photochem. Photobiol. Sci., 2004, 3, 519–530.

    Article  CAS  PubMed  Google Scholar 

  10. J. A. Kyndt, J. C. Fitch, T. E. Meyer and M. A. Cusanovich, Thermochromatium tepidum photoactive yellow protein/bacteriophytochrome/diguanylate cyclase: characterization of the PYP domain, Biochemistry, 2005, 44, 4755–4764.

    Article  CAS  PubMed  Google Scholar 

  11. J. A. Kyndt, J. K. Hurley, B. Devreese, T. E. Meyer, M. A. Cusanovich, G. Tollin, J. J. Van Beeumen, Rhodobacter capsulatus photoactive yellow protein: genetic context, spectral and kinetics characterization, and mutagenesis, Biochemistry, 2004, 43, 1809–1820.

    Article  CAS  PubMed  Google Scholar 

  12. M. Kumauchi, M. T. Hara, P. Stalcup, A. Xie and W. D. Hoff, Identification of six new photoactive yellow proteins–Diversity and Structure-function relationships in a bacterial blue light photoreceptor, Photochem. Photobiol., 2008, 84, 956–969.

    Article  CAS  PubMed  Google Scholar 

  13. J. J. Van Beeumen, B. V. Devreese, S. M. Van Bun, W. D. Hoff, K. J. Hellingwerf, T. E. Meyer, D. E. McRee and M. A. Cusanovich, Primary structure of a photoactive yellow protein from the phototrophic bacterium Ectothiorhodospira halophila, with evidence for the mass and the binding site of the chromophore, Prot. Sci., 1993, 2, 1114–1125.

    Article  Google Scholar 

  14. G. Borgstahl, D. R. Williams and E. D. Getzoff, 1.4A Structure of photoactive yellow protein, a cytosolic photoreceptor: Unusual fold active site, and chromopore, Biochemistry, 1995, 34, 6278–6287.

    Article  CAS  PubMed  Google Scholar 

  15. U. K. Genick, S. Devanathan, T. E. Meyer, I. L. Canestrelli, E. Williams, M. A. Cusanovich, G. Tollin and E. D. Getzoff, Active site mutants implicate key residues for control of color and light cycle kinetics of photoactive yellow protein, Biochemistry, 1997, 36, 8–14.

    Article  CAS  PubMed  Google Scholar 

  16. A. Xie, K. Kelemen, J. Hendriks, B. J. White, K. J. Hellingwerf and W. D. Hoff, Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation, Biochemistry, 2001, 40, 1510–1517.

    Article  CAS  PubMed  Google Scholar 

  17. K. Mihara, O. Hisatomi, Y. Imamoto, M. Kataoka and F. Tokunaga, Functional expression and site directed mutagenesis of photoactive yellow protein, J. Biochem., 1997, 121, 876–880.

    Article  CAS  PubMed  Google Scholar 

  18. R. Brudler, T. E. Meyer, U. K. Genick, S. Devanathan, T. T. Woo, D. P. Millar, K. Gerwert, M. A. Cusanovich, G. Tollin and E. D. Getzoff, Coupling of hydrogen bonding to chromophore conformation and function in photoactive yellow protein, Biochemistry, 2000, 39, 13478–13486.

    Article  CAS  PubMed  Google Scholar 

  19. C. P. Joshi, H. Otto, D. Hoersch, T. E. Meyer, M. A. Cusanovich and M. P. Heyn, Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein, Biochemistry, 2009, 48, 9980–9993.

    Article  CAS  PubMed  Google Scholar 

  20. S. Devanathan, U. K. Genick, I. L. Canestrelli, T. E. Meyer, M. A. Cusanovich, E. D. Getzoff and G. Tollin, New insights into the photocycle of Ectothiorhodospira halophila photoactive yellow protein: photorecovery of the long-lived photobleached intermediate in the Met100Ala mutant, Biochemistry, 1998, 37, 11563–8.

    Article  CAS  PubMed  Google Scholar 

  21. M. Kumauchi, N. Hamada, J. Sasaki and F. Tokunaga, A role of methionine 100 in facilitating PYP(M)-decay process in the photocycle of photoactive yellow protein, J. Biochem., 2002, 132, 205–210.

    Article  CAS  PubMed  Google Scholar 

  22. S. Rajagopal and K. Moffat, Crystal structure of a photoactive yellow protein from a sensor histidine kinase: conformational variability and signal transduction, Proc. Natl. Acad. Sci. USA, 2003, 100, 1649–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Haker, J. Hendriks, T. Gensch, K. Hellingwerf and W. Crielaard, Isolation, reconstitution and functional characterisation of the Rhodobacter sphaeroides photoactive yellow protein, FEBS Lett., 2000, 486, 52–56.

    Article  CAS  PubMed  Google Scholar 

  24. M. Kumauchi, S. Kaledhonkar, A. F. Philip, J. Wycoff, M. Hara, Y. Li, A. Xie and W. D. Hoff, A conserved helical capping hydrogen bond in PAS domains controls signaling kinetics in the superfamily prototype photoactive yellow protein, J. Am. Chem. Soc., 2010, 132, 15820–15830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. B. Borucki, J. A. Kyndt, C. P. Joshi, H. Otto, T. E. Meyer, M. A. Cusanovich and M. P. Heyn, Effect of salt and pH on the activation of photoactive yellow protein and gateway mutants Y98Q and Y98F, Biochemistry, 2005, 44, 13650–13663.

    Article  CAS  PubMed  Google Scholar 

  26. J. A. Kyndt, S. N. Savvides, S. Memmi, M. Koh, J. C. Fitch, T. E. Meyer, M. P. Heyn, J. J. Van Beeumen and M. A. Cusanovich, Structural role of Tyrosine 98 in photoactive yellow protein: effects on fluorescence, gateway and photocycle recovery, Biochemistry, 2007, 46, 95–105.

    Article  CAS  PubMed  Google Scholar 

  27. T. Morishita, M. Harigai, Y. Yamazaki, H. Kamikubo, M. Kataoka and Y. Imamoto, Array of aromatic amino acid side chains located near the chromophore of photoactive yellow protein, Photochem. Photobiol., 2007, 83, 280–285.

    Article  CAS  PubMed  Google Scholar 

  28. M. Baca, G. E. O. Borgstahl, M. Boissinot, P. M. Burke, D. R. Williams, K. A. Slater and E. D. Getzoff, Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry, Biochemistry, 1994, 33, 14369–14377.

    Article  CAS  PubMed  Google Scholar 

  29. R. Kort, W. D. Hoff, M. Van West, A. R. Kroon, S. M. Hoffer, K. H. Vlieg, W. Crielaard, J. J. Van Beeumen and K. J. Hellingwerf, The xanthopsins: a new family of eubacterial blue-light photoreceptors, EMBO J., 1996, 15, 3209–3218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. A. Kyndt, T. E. Meyer, M. A. Cusanovich, J. J. Van Beeumen, Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein, FEBS Lett., 2002, 512, 240–244.

    Article  CAS  PubMed  Google Scholar 

  31. J. A. Kyndt, F. Vanrobaeys, F. C. Fitch, B. V. Devreese, T. E. Meyer, M. A. Cusanovich, J. J. Van Beeumen, Heterologous production of Halorhodospira halophila holo photoactive yellow protein through tandem expression of the postulated biosynthetic genes, Biochemistry, 2003, 42, 965–970.

    Article  CAS  PubMed  Google Scholar 

  32. J. S. Mattick, Type IV pili and twitching motility, Annu. Rev. Microbiol., 2002, 56, 289–314.

    Article  CAS  PubMed  Google Scholar 

  33. M. A. van der Horst, W. Laan, S. Yeremenko, A. Wende, P. Palm, D. Oesterhelt and K. J. Hellingwerf, From primary photochemistry to biological function in the blue light photoreceptors PYP and AppA, Photochem, Photobiol. Sci., 2005, 4, 688–693.

    Article  CAS  Google Scholar 

  34. R. Narikawa, Y. Fukushima, T. Ishizuka, S. Itoh and M. Ikeuchi, A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion, J. Mol. Biol., 2008, 380, 844–855.

    Article  CAS  PubMed  Google Scholar 

  35. S. Yoshihara, F. Suzuki, H. Fujita, X. X. Geng and M. Ikeuchi, Novel putative photoreceptor and regulatory genes Required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 2000, 41, 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  36. S. Hou, J. H. Saw, K. S. Lee, T. A. Freitas and C. Belisle, et al. Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy, Proc. Natl. Acad. Sci. USA, 2004, 101, 18036–18041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. P. Donachie, S. Hou, T. S. Gregory, A. Malahoff and M. Alam, Idiomarina loihiensis sp. nov., a halophilic gamma-Proteobacterium from the Loihi submarine volcano, Hawaii, Int. J. Syst. Evol. Microbiol., 2003, 53, 1873–1879.

    Article  CAS  PubMed  Google Scholar 

  38. M. A. van der Horst, P. Stalcup, S. Kaledhonkar, M. Kumauchi, M. Hara, A. Xie, K. J. Hellingwerf and W. D. Hoff, Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis, J. Am. Chem. Soc., 2009, 131, 17443–17451.

    Article  PubMed  CAS  Google Scholar 

  39. P. Peters, E. Tel-Or and H. G. Trueper, Transport of glycine betaine in the extremely haloalkaliphilic sulphur bacterium Ectothiorhodospira halochloris, J. Gen. Microbiol., 1992, 138, 1993–1998.

    Article  CAS  Google Scholar 

  40. J. L. Ramos, M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. Zhang, M. T. Gallegos, R. Brennan and R. Tobes, The TetR family of transcriptional repressors, Microbiol. Mol. Biol. Rev., 2005, 69, 326–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. S. Murray, M. A. Schumacher and R. G. Brennan, Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization, J. Biol. Chem., 2004, 279, 14365–14371.

    Article  CAS  PubMed  Google Scholar 

  42. M. Gomelsky and W. D. Hoff, Light helps bacteria make important lifestyle decisions, Trends Microbiol, 2011, 19, 441–448.

    Article  CAS  PubMed  Google Scholar 

  43. T. E. Meyer, J. C. Fitch, R. G. Bartsch, G. Tollin and M. A. Cusanovich, Soluble cytochromes and a photoactive yellow protein isolated from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salexigens, Biochim. Biophys. Acta, 1990, 1016, 364–370.

    Article  CAS  PubMed  Google Scholar 

  44. M. Koh, G. Van Driessche, B. Samyn, W. D. Hoff, T. E. Meyer, M. A. Cusanovich, J. J. Van Beeumen, Sequence evidence for strong conservation of the photoactive yellow proteins from the halophilic phototrophic bacteria Chromatium salexigens and Rhodospirillum salexigens, Biochemistry, 1996, 35, 2526–2534.

    Article  CAS  PubMed  Google Scholar 

  45. S. S. Krishna, I. Majumdar and N. V. Grishin, Structural classification of zinc fingers: survey and summary, Nucleic Acids Res., 2003, 31, 532–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. Meades Jr, B. K. Benson, A. Grove and G. L. Waldrop, A tale of two functions: enzymatic activity and translational repression by carboxyltransferase, Nucleic Acids Res., 2010, 38, 1217–1227.

    Article  CAS  PubMed  Google Scholar 

  47. T. Tamada, K. Kitadokoro, Y. Higuchi, K. Inaka, A. Yasui, P. E. de Ruiter, A. P. M. Eker and K. Miki, Crystal structure of DNA photolyase from Anacystis nidulans, Nat. Struct. Mol. Biol., 1997, 4, 887–891.

    Article  CAS  Google Scholar 

  48. H. Park, S. Kim, A. Sancar and J. Deisenhofer, Crystal structure of DNA photolyase from Escherichia coli, Science, 1995, 268, 1866–1872.

    Article  CAS  PubMed  Google Scholar 

  49. R. Kort, M. K. Phillips-Jones, D. M. van Aalten, A. Haker, S. M. Hoffer, K. J. Hellingwerf and W. Crielaard, Sequence, chromophore extraction and 3-D model of the photoactive yellow protein from Rhodobacter sphaeroides, Biochim. Biophys. Acta, 1998, 1385, 1–6.

    Article  CAS  PubMed  Google Scholar 

  50. H. Strnad, A. Lapidus, J. Paces, P. Ulbrich, C. Vlcek, V. Paces and R. Haselkorn, Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003, J. Bacteriol., 2010, 192, 3545–3546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Choudhary, X. Zanhua, Y. X. Fu and S. Kaplan, Genome analyses of three strains of Rhodobacter sphaeroides: Evidence of rapid evolution of chromosome II, J. Bacteriol., 2007, 189, 1914–1921.

    Article  CAS  PubMed  Google Scholar 

  52. S. K. Lim, S. J. Kim, S. H. Cha, Y. K. Oh, H. J. Rhee, M. S. Kim and J. K. Lee, Complete genome sequence of Rhodobacter sphaeroides KD131, J. Bacteriol., 2009, 191, 1118–1119.

    Article  CAS  PubMed  Google Scholar 

  53. S. Yooseph, G. Sutton, D. B. Rusch, A. L. Halpern and S. J. Williamson, et al. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families, PLoS Biol., 2007, 5, e16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. J. F. Imhoff, B. J. Tindall, W. D. Grant and H. G. Trueper, Ectothiorhodospira vacuolata sp.: nov., a new phototrophic bacterium from Soda Lakes, Arch. Microbiol., 1981, 130, 238–242.

    Article  CAS  Google Scholar 

  55. A. E. Walsby, Gas vesicles, Microbiol. Rev., 1994, 58, 94–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D. O. Jung, L. A. Achenbach, E. A. Karr, S. Takaichi and M. T. Madigan, A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica, Arch. Microbiol., 2004, 182, 236–243.

    Article  CAS  PubMed  Google Scholar 

  57. G. van Keulen, D. A. Hopwood, L. Dijkhuizen and R. G. Sawers, Gas vesicles in actinomycetes: old buoys in novel habitats?, Trends Micobiol., 2005, 13, 350–354.

    Article  CAS  Google Scholar 

  58. A. E. Walsby and P. G. Dunton, Gas vesicles in actinomycetes?, Trends Microbiol., 2006, 14, 99–100.

    Article  CAS  PubMed  Google Scholar 

  59. M. Jaubert, J. Lavergne, J. Fardoux, L. Hannibal, L. Vuillet, J. M. Adriano, P. Bouyer, D. Pignol, E. Giraud, A. Verméglio, A singular bacteriophytochrome acquired by lateral gene transfer, J. Biol. Chem., 2007, 282, 7320–7328.

    Article  CAS  PubMed  Google Scholar 

  60. Y. K. Lu, J. Marden, M. Han, W. D. Swingley, S. D. Mastrian, S. R. Chowdhury, J. Hao, T. Helmey, S. Kim, A. A. Kurdoglu, H. J. Matthies, D. Rollo, P. Stothard, R. E. Blankenship, C. E. Bauer and J. E. Touchman, Metabolic flexibility revealed in the genome of the cyst forming alpha-1 proteobacterium Rhodospirillum centenum, BMC Genomics, 2010, 11, 325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. J. E. Berleman and C. E. Bauer, Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum, Mol. Biol., 2005, 56, 457–466.

    Google Scholar 

  62. D. Segura, T. Cruz and G. Espin, Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-beta-hydroxybutyrate synthesis, Arch. Microbiol., 2003, 179, 437–443.

    Article  CAS  PubMed  Google Scholar 

  63. N. Funa, H. Ozawa, A. Hirata and S. Horinouchi, Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii, Proc. Natl. Acad. Sci. USA, 2006, 103, 6356–6361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. J. A. Kyndt, J. C. Fitch, T. E. Meyer and M. A. Cusanovich, The photoactivated PYP domain of Rhodospirillum centenum Ppr accelerates the recovery of the bacteriophytochrome domain after white light illumination, Biochemistry, 2007, 46, 8256–8262.

    Article  CAS  PubMed  Google Scholar 

  65. J. A. Kyndt, J. C. Fitch, S. Seibeck, B. Borucki, M. P. Heyn, T. E. Meyer and M. A. Cusanovich, Regulation of the Ppr histidine kinase by light-induced interactions between its photoactive yellow protein and bacteriophytochrome domains, Biochemistry, 2010, 49, 17344–17354.

    Article  CAS  Google Scholar 

  66. J. B. Jaftha, B. W. Strijdom and P. L. Steyn, Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii, Syst. Appl. Microbiol., 2002, 25, 440–449.

    Article  CAS  PubMed  Google Scholar 

  67. M. Tarutina, D. A. Ryjenkov and M. Gomelsky, An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP, J. Biol. Chem., 2006, 281, 34751–8.

    Article  CAS  PubMed  Google Scholar 

  68. R. Tal, H. C. Wong, R. Calhoon, D. Gelfand, A. L. Fear, G. Volman, R. Mayer, P. Ross, D. Amikam, H. Weinhouse, A. Cohen, S. Sapir, P. Ohana and M. Benziman, Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes, J. Bacteriol., 1998, 180, 4416–4425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. A. D. Tischler and A. Camilli, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation, Mol. Microbiol., 2004, 53, 857–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. U. Romling, M. Gomelsky and M. Y. Galperin, C-di-GMP: the dawning of a novel bacterial signaling system, Mol. Microbiol., 2005, 57, 629–639.

    Article  PubMed  CAS  Google Scholar 

  71. R. P. Ryan, T. Tolker-Nielsen and J. M. Dow, When the PilZ don’t work: effectors for cyclic di-GMPaction in bacteria, Trends Microbiol, 2012, 20, 235–242.

    Article  CAS  PubMed  Google Scholar 

  72. N. Sudarsan, E. R. Lee, Z. Weinberg, R. H. Moy, J. N. Kim, K. H. Link and R. R. Breaker, Riboswitches in eubacteria sense the second messenger cyclic di-GMP, Science, 2008, 321, 411–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. E. F. Mongodin, K. E. Nelson, S. Daugherty, R. T. DeBoy, J. Wister, H. Khouri, J. Weidman, D. A. Walsh, R. T. Papke, G. Sanchez Perezs, A. K. Sharma, C. L. Nesbo, D. MacLeod, E. Bapteste, W. F. Doolittle, R. T. L. Charlebois, B. Legault, F. Rodriguez-Valera, The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea, Proc. Natl. Acad. Sci. USA, 2005, 102, 18147–18152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. S. Memmi, J. A. Kyndt, T. E. Meyer, B. Devreese, M. A. Cusanovich, J. J. Van Beeumen, Photoactive yellow protein from the halophilic bacterium Salinibacter ruber, Biochemistry, 2008, 47, 2014–2024.

    Article  CAS  PubMed  Google Scholar 

  75. A. Pena, et al. Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting salinibacter ruber strains, ISME J., 2010, 4, 882–895.

    Article  CAS  PubMed  Google Scholar 

  76. Y. Oda, F. W. Larimer, P. S. Chain, S. Malfatti, M. V. Shin, L. M. Vergez, L. Hauser, M. L. Land, S. Braatsch, J. T. Beatty, D. A. Pelletier, A. L. Schaefer and C. S. Harwood, Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments, Proc. Natl. Acad. Sci. USA, 2008, 105, 18543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. P. J. B. Brown, D. T. Kysela, A. Buechlein, C. Hemmerich and Y. V. Brun, Genome sequences of eight morphologically diverse alphaproteobacteria, J. Bacteriol., 2011, 193, 4567–4568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. A. Weilharter, B. Mitter, M. V. Shin, P. S. G. Chain, J. Nowak and A. Sessitsch, Complete genome sequence of the plant growth-promoting endophyte, Burkholderia phytofirmans strain PsJN, J. Bacteriol., 2011, 193, 3383–3384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. W. Kittichotirat, N. M. Good, R. Hall, F. Bringel, A. Lajus, C. Medigue, N. E. Smalley, D. Beck, R. Bumgarner, S. Vuilleummier and M. G. Kalyushnaya, Genome sequence of Methyloversatilis universalis FASM5, a methylotrophic representative of the order Rhodocyclales, J. Bacteriol., 2011, 193, 4541–4542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. I. M. Oh, K. Lee, Y. Jang, I. Kang, I. J. Kim, T. W. Kang, S. Y. Kim and J. C. Cho, Genome sequence of strain IMCC9480, a xanthorhodopsin-bearing betaproteobacterim isolated from the Arctic Ocean, J. Bacteriol., 2011, 193, 3421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. J. A. Chapman, E. F. Kirkness, O. Simakov, S. E. Hampson and T. Mitros, et al. The dynamic genome of Hydra, Nature, 2010, 464, 592–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. K. Cho and D. R. Zusman, AsgD, a new two-component regulator required for A signaling and nutrient sensing during early development of Myxococcus xanthus, Mol. Microbiol., 1999, 34, 268–281.

    Article  CAS  PubMed  Google Scholar 

  83. D. Kaiser, Signaling in myxobacteria, Annu. Rev. Microbiol., 2004, 58, 75–98.

    Article  CAS  PubMed  Google Scholar 

  84. S. Inouye, D. White and M. Inouye, Development of Stigmatella aurantiaca: effects of light and gene expression, J. Bacteriol., 1980, 141, 1360–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. G. T. Qualls, K. Stephens and D. White, Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca, Science, 1978, 201, 444–445.

    Article  CAS  PubMed  Google Scholar 

  86. D. White, W. Shropshire Jr and K. Stephens, Photocontrol of development by Stigmatella aurantiaca, J. Bacteriol., 1980, 142, 1023–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. C. Benda, C. Scheufler, N. Tandeau de Marsac, W. Gärtner, Crystal structures of two cyanobacterial response regulators in apo- and phosphorylated form reveal a novel dimerization motif of phytochrome-associated response regulators, Biophys. J., 2004, 87, 476–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. S. Schneiker, O. Perlova, O. Kaiser, K. Gerth and A. Alici, et al. Complete genome sequence of the myxobacterium Sorangium cellulosum, Nat. Biotechnol., 2007, 25, 1281–1289.

    Article  CAS  PubMed  Google Scholar 

  89. D. Guzman, A. Balderrama-Subieta, C. Cardona-Orturo, M. Guevara-Martinez, N. Callisaya-Quispe and J. Quillaguaman, Evolutionary patterns of carbohydrate transport and metabolism in Halomonas boliviensis as derived from its genome sequence: influences on polyester production, Aquat. Biosyst., 2012, 8, 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. J. K. Gupta, R. D. Gupta, A. Singh, N. S. Chauhan and R. Sharma, Genome sequence of Rheinheimera sp. strain A13L, isolated from Pangong Lake, India, J. Bacteriol., 2011, 193, 5873–5874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. J. Valdes, R. Quatrini, K. Hallberg, M. Dopson, P. D. T. Valenzuela and D. S. Holmes, Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus, J. Bacteriol., 2009, 191, 5877–5878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. S. Vuilleumier, L. Chistoserdova, M. C. Lee, F. Bringel and A. Lajus, et al. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources, PLoS One, 2009, 4, E5584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. L. Vuillet, M. Kojadinovic, S. Zappa, M. Jaubert, J. M. Adriano, J. Fardoux, L. Hannibal, D. Pignol, A. Verméglio and E. Giraud, Evolution of a bacteriophytochrome from light to redox sensor, EMBO J., 2007, 26, 3322–3331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. S. Vuilleumier, et al. Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, J. Bacteriol., 2012, 194, 551–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. T. Weissgerber, et al. Complete genome sequence of Allochromatium vinosum DSM180, Stand. Gen. Sci., 2011, 5, 311–330.

    Article  CAS  Google Scholar 

  96. S. Huntley, et al. Comparative genomic analysis of fruiting body formation in Myxococcales, Mol. Biol. Evol., 2010, 28, 1083–1097.

    Article  PubMed  CAS  Google Scholar 

  97. N. Ivanova, et al. Complete genome sequence of Haliangium ochraceum type strain (SMP-2), Stand. Gen. Sci., 2010, 2, 96–106.

    Article  Google Scholar 

  98. A. Lapidus, et al. Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the Methylophilaceae, J. Bacteriol., 2011, 193, 3757–3764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. K. Lail, et al. Complete genome sequence of Spirosoma linguale type strain (1T), Stand. Gen. Sci., 2010, 2, 176–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, T.E., Kyndt, J.A., Memmi, S. et al. The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 11, 1495–1514 (2012). https://doi.org/10.1039/c2pp25090j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25090j

Navigation