Skip to main content
Log in

Formation of hydrogen peroxide by VUV-photolysis of water and aqueous solutions with methanol

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The hydrogen peroxide production upon vacuum ultraviolet (VUV) irradiation of water is reviewed, because published results from the last 10 years lead to conflicting mechanistic interpretations. This work confirms that in pure water, hydrogen peroxide is only produced in the presence of molecular oxygen. Mechanistic schemes explain these findings and confirm earlier statements that recombination of hydroxyl radicals is kinetically disfavoured. In agreement with other recent publications, this work confirms that enhanced hydrogen peroxide production takes place upon VUV irradiation of aqueous solutions of organic compounds. For these investigations, methanol was chosen as an organic model compound. During photolyses, hydrogen peroxide, dissolved molecular oxygen, pH-value of the reaction system, methanol and its products of oxidative degradation were analyzed, and kinetic studies were undertaken to explain the evolution of the concentrations of these components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Oppenländer, Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts, Wiley-VCH, Weinheim, 2003, ISBN: 978-3-527-30563-6, pp. 200–213.

    Google Scholar 

  2. C. Baus, K. Schaber, I. Gassiot Pintori, A. M. Braun, Sep. Purif. Technol. 2002 28 125–140.

    Article  CAS  Google Scholar 

  3. I. Gassiot Pintori, Untersuchungen VUV-photochemisch induzierter Prozesse zum Abbau von Schadstoffen in der Gasphase, Dissertation, Fakultät für Chemieingenieurwesen und Verfahrenstechnik, Universität Karlsruhe (TH), Karlsruhe, 2001.

    Google Scholar 

  4. G. Heit, A. M. Braun, J. Inf. Rec. 1996 22 543–546.

    CAS  Google Scholar 

  5. G. Heit, A. M. Braun, Water Sci. Technol. 1997 35 25–30.

    Article  CAS  Google Scholar 

  6. T. M. Hashem, The Use of VUV and UV-C Light Sources for Advanced Oxidation Processes, Dissertation, Fakultät für Chemieingenieurwesen und Verfahrenstechnik, Universität Karlsruhe (TH), Karlsruhe, 1998.

    Google Scholar 

  7. O. Legrini, E. Oliveros, A. M. Braun, Chem. Rev. 1993 93 671–698.

    Article  CAS  Google Scholar 

  8. T. Aminian-Saghafi, Reactivité du peroxide d’hydrogène dans des microemulsions, Thèse Nr. 873, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1990.

    Google Scholar 

  9. L. Jakob, T. M. Hashem, S. Bürki, N. M. Guindy, A. M. Braun, J. Photochem. Photobiol., A 1993 75 97–103.

    Article  CAS  Google Scholar 

  10. K. Azrague, E. Bonnefille, V. Pradines, V. Pimienta, E. Oliveros, M.-T. Maurette, F. Benoit-Marquié, Photochem. Photobiol. Sci. 2005 4 406–408.

    Article  CAS  Google Scholar 

  11. M. C. Gonzalez, E. Oliveros, M. Wörner, A. M. Braun, J. Photochem. Photobiol., C 2004 5 225–246.

    Article  CAS  Google Scholar 

  12. G. V. Buxton, A. J. Elliot, J. Chem. Soc., Faraday Trans. 1993 89 485–488.

    Article  CAS  Google Scholar 

  13. X.-Y. Yu, J. Phys. Chem. Ref. Data 2004 33 747–763.

    Article  CAS  Google Scholar 

  14. B. H. J. Bielski, D. E. Cabelli, R. L. Arudi, A. B. Ross, J. Phys. Chem. Ref. Data 1985 14 1041–1100.

    Article  CAS  Google Scholar 

  15. E. Arany, T. Oppenländer, K. Gajda-Schrantz and A. Dombi, Influence of H2O2 formed in situ on the photodegradation of ibuprofen and ketoprofen Curr. Phys. Chem. 2012 2 [BSP/CPC/E-Pub/0013].

  16. G. Heit, A. Neuner, P.-Y. Saugy, A. M. Braun, J. Phys. Chem. A 1998 102 5551–5561.

    Article  CAS  Google Scholar 

  17. G. Heit, Optische in situ-Sauerstoffmessung, VUV-Aktinometrie und Numerische Simulation, Dissertation, Fakultät für Chemieingenieurwesen und Verfahrenstechnik, Universität Karlsruhe (TH), Karlsruhe, 1996.

    Google Scholar 

  18. J. J. Wu, M. Muruganandham, L. T. Chang, G. J. Lee, V. N. Batalova, G. M. Mokrousov, Ozone: Sci. Eng. 2011 33 74–79.

    Article  CAS  Google Scholar 

  19. G. Imoberdorf, M. Mohseni, Chem. Eng. Sci. 2011 66 1159–1167.

    Article  CAS  Google Scholar 

  20. VDI 2468, Sheet 9, Messen der Wasserstoffperoxid-Konzentration, Registrierendes fluorimetrisches Verfahren, Verein Deutscher Ingenieure e.V. (VDI), Redaktion VDI-Richtlinien, Düsseldorf, 2005.

  21. M. C. Gonzalez, A. M. Braun, J. Photochem. Photobiol., A 1996 95 67–72.

    Article  CAS  Google Scholar 

  22. M. C. Gonzalez, G. Carrillo Le Roux, J. A. Rosso, A. M. Braun, Chemosphere 2007 69 1238–1244.

    Article  CAS  Google Scholar 

  23. J. López Gejo, Applications of the VUV-Photochemically Initiated Oxidation for Waste Gas Treatment and Surface Functionalization, Dissertation, Fakultät für Chemieingenieurwesen und Verfahrenstechnik, Universität Karlsruhe (TH), Karlsruhe, 2005.

    Google Scholar 

  24. J. López-Gejo, H. Glieman, T. Schimmel, A. M. Braun, Photochem. Photobiol. 2005 81 777–782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Braun.

Additional information

This article is published as part of a themed issue in honour of Professor Kurt Schaffner on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robl, S., Wörner, M., Maier, D. et al. Formation of hydrogen peroxide by VUV-photolysis of water and aqueous solutions with methanol. Photochem Photobiol Sci 11, 1041–1050 (2012). https://doi.org/10.1039/c2pp05381k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05381k

Navigation