Skip to main content
Log in

Predicting efficacy of photodynamic therapy by real-time FDG-PET in a mouse tumour model

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Dynamic positron emission tomography (PET) combined with the constant infusion of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) as a tracer permits real-time monitoring of systemic transient metabolic changes resulting from photodynamic therapy (PDT) in tumour bearing animals. The effect of PDT on tumour FDG uptake rates was evaluated using four different sulfonated phthalocyanine analogs as photosensitizers (PS) in combination with either continuous or fractionated illumination protocols. Mice bearing two EMT-6 tumours were infused with FDG to start PDT 30 min later. Dynamic images were acquired to produce FDG uptake over time for the treated and reference tumours. Practically all PDT protocols induced a reduction in the FDG uptake rates in the treated tumour during PDT, except for the zinc tetrasulfophthalocyanine, when using fractionated light, reflecting the low photodynamic efficacy of this PS. In general, the response to PDT was characterized by a rebound in the FDG uptake rate after illumination. A strong drop in FDG tumour uptake rates during PDT, followed by a strong rebound, together with short delay-to-response times, corresponded to optimal long-term tumour response outcomes. This dynamic FDG-PET protocol provides real-time observations to predict long-term PDT efficacy, while using fewer animals than conventional methods, thus making possible the rapid optimization of treatment parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refernces

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1988, 90, 889–905

    Article  Google Scholar 

  2. E. J. Dennis, G. J. Dolmans, D. Fukumura, R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387

    Article  Google Scholar 

  3. S. B. Brown, E. A. Brown, I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  Google Scholar 

  4. W. M. Sharman, C. M. Allen, J. E. van Lier, Photodynamic therapeutics: Basic principles and clinical applications, Drug Discovery Today, 1999, 4, 507–517.

    Article  CAS  Google Scholar 

  5. W. M. Sharman, C. M. Allen, J. E. van Lier, Role of activated oxygen species in photodynamic therapy, Methods Enzymol., 2000, 319, 376–400

    Article  CAS  Google Scholar 

  6. J. H. Woodhams, A. J. MacRobert, S. G. Bown, The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry, Photochem. Photobiol. Sci., 2007, 6, 1246–1256.

    Article  CAS  Google Scholar 

  7. E. Buytaert, M. Dewaele, P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim. Biophys. Acta, Rev. Cancer, 2007, 1776, 86–107.

    Article  CAS  Google Scholar 

  8. C. J. Gomer, A. Ferrario, M. Luna, N. Rucker, S. Wong, O. Bozkulak and F. Xu, Photodynamic therapy and the tumor micro-environment, in Handbook of Porphyrin Science: phototherapy, radioimmuno-therapy and imaging, ed. K. M. Kadish, K. M. Smith and R. Guilard, World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, USA, 2010, 4, pp. 425–441.

    CAS  Google Scholar 

  9. D. Preise, R. Oren, I. Glinert, V. Kalchenko, S. Jung, A. Scherz, Y. Salomon, Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity, Cancer Immunol. Immunother., 2009, 58, 71–84

    Article  CAS  Google Scholar 

  10. M. Firczuk, D. Nowis, J. Gołąb, PDT-induced inflammatory and host responses, Photochem. Photobiol. Sci., 2011, 10, 653–663.

    Article  CAS  Google Scholar 

  11. C. A. Robertson, D. H. Evans, H. Abrahamse, Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT, J. Photochem. Photobiol., B, 2009, 96, 1–8.

    Article  CAS  Google Scholar 

  12. B. W. Henderson, T. M. Busch, J. Snyder, Fluence rate as a modulator of PDT mechanisms, Lasers Surg. Med., 2006, 38, 489–493.

    Article  Google Scholar 

  13. H. S. de Bruijn, E. R. de Haas, K. M. Hebeda, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, H. A. Neumann, D. J. Robinson, Light fractionation does not enhance the efficacy of methyl 5-aminolevulinate mediated photodynamic therapy in normal mouse skin, Photochem. Photobiol. Sci., 2007, 6, 1325–1331

    Article  Google Scholar 

  14. M. Seshadri, D. A. Bellnier, L. A. Vaughan, J. A. Spernyak, R. Mazurchuk, T. H. Foster, B. W. Henderson, Light delivery over extended time periods enhances the effectiveness of photodynamic therapy, Clin. Cancer Res., 2008, 14, 2796–805

    Article  CAS  Google Scholar 

  15. T. A. Middelburg, F. van Zaane, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, H. A. Neumann, E. R. de Haas, D. J. Robinson, Fractionated illumination at low fluence rate photo-dynamic therapy in mice, Photochem. Photobiol., 2010, 86, 1140–1146.

    Article  CAS  Google Scholar 

  16. N. Cauchon, M. Nader, G. Bkaily, J. E. van Lier, D. Hunting, Photodynamic activity of substituted zinc trisulfo-phthalocyanines: role of plasma membrane damage, Photochem. Photobiol., 2006, 82, 1712–1720.

    Article  CAS  Google Scholar 

  17. B. Krammer, Vascular effects of photodynamic therapy, Anticancer Res., 2001, 21, 4271–4277.

    CAS  Google Scholar 

  18. H. Ali, J. E. van Lier, Metal complexes as photo- and radiosensitizers, Chem. Rev., 1999, 99, 2379–2450

    Article  CAS  Google Scholar 

  19. H. Ali and J. E. van Lier, Porphyrins and phthalocyanines as photo- and radiosensitizers, in Handbook of Porphyrin Science: phototherapy radioimmunotherapy and imaging, ed. K. M. Kadish, K. M. Smith and R. Guilard, World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, USA, 2010, 4, pp. 1–120.

    CAS  Google Scholar 

  20. Y. N. Konan, R. Gurny, E. Allémann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2002, 66, 89–106.

    Article  CAS  Google Scholar 

  21. W. S. Chan, C. M. L. West, J. V. Moore, I. R. Hart, Phototoxic efficacy of sulphonated species of aluminium phthalocyanine against cell monolayers, multicellular spheroids and in vivo tumours, Br. J. Cancer, 1991, 64, 827–832

    Article  CAS  Google Scholar 

  22. W. S. Chan, N. Brasseur, C. La Madeleine, J. E. van Lier, Evidence for different mechanisms of EMT-6 tumor necrosis by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin: tumor cell survival and blood flow, Anticancer Res., 1996, 16, 1887–1892

    CAS  Google Scholar 

  23. W. S. Chan, N. Brasseur, C. La Madeleine, R. Ouellet, J. E. van Lier, Efficacy and mechanism of aluminium phthalocyanine and its sulfonated derivatives mediated photodynamic therapy on murine tumours, Eur. J. Cancer, 1997, 33, 1855–1859.

    Article  CAS  Google Scholar 

  24. V. H. Fingar, T. J. Wieman, P. S. Karavolos, K. W. Doak, R. Ouellet, J. E. van Lier, The effects of photodynamic therapy using differently substituted zinc phthalocyanines on vessel constriction, vessel leakage and tumor response, Photochem. Photobiol., 1993, 58, 251–258

    Article  CAS  Google Scholar 

  25. H. L. L. M. van Leengoed, N. von der Veen, A. A. C. Versteeg, R. Ouellet, J. E. van Lier, W. M. Star, In vivo photodynamic effects of phthalocyanines in a skin-fold observation chamber model: Role of central metal ion and degree of sulfonation, Photochem. Photobiol., 1993, 58, 575–580.

    Article  Google Scholar 

  26. N. Cauchon, H. Tian, R. Langlois, C. La Madeleine, S. Martin, H. Ali, D. Hunting, J. E. van Lier, Structure–photodynamic activity relationships of substituted zinc trisulfophthalocyanines, Bioconjugate Chem., 2005, 16, 80–89

    Article  CAS  Google Scholar 

  27. N. Cauchon, H. Ali, H. M. Hasséssian, J. E. van Lier, Structure–activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer, Photochem. Photobiol. Sci., 2010, 9, 331–341.

    Article  CAS  Google Scholar 

  28. D. Lapointe, N. Brasseur, J. Cadorette, S. Rodrigue, J. E. van Lier, R. Lecomte, High-resolution PET imaging for in vivo monitoring of tumor response after photodynamic therapy in mice, J. Nucl. Med., 1999, 40, 876–882.

    CAS  Google Scholar 

  29. V. Bérard, J. A. Rousseau, J. Cadorette, L. Hubert, M. Bentourkia, J. E. van Lier, R. Lecomte, Dynamic imaging of transient metabolic processes by small-animal PET for the evaluation of photosensitizers in photodynamic therapy of cancer, J. Nucl. Med., 2006, 47, 1119–1126.

    Google Scholar 

  30. N. L. Oleinick, R. L. Morris, I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21

    Article  CAS  Google Scholar 

  31. N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, J. E. van Lier, PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V, Eur. J. Nucl. Med. Mol. Imaging, 2006, 34, 247–258.

    Article  Google Scholar 

  32. R. Kubota, S. Yamamda, K. Kubota, K. Ishiwata, N. Tamahashi, T. Ido, Intratumoral distribution of fluorin-18-fluorodeosyglucose in vivo; high accumulation in macrophages and granulation tissues studied by microauto-radiography, J. Nucl. Med., 1992, 33, 1972–1980.

    CAS  Google Scholar 

  33. H. Ali, R. Langlois, R. Wagner, N. Brasseur, B. Paquette, J. E. van Lier, Biological activities of phthalocyanines-X: syntheses and analyses of sulfonated phthalocyanines, Photochem. Photobiol., 1988, 47, 713–717

    Article  CAS  Google Scholar 

  34. E. R. Ranyuk, N. Cauchon, H. Ali, R. Lecomte, B. Guérin, J. E. van Lier, PET imaging using 64Cu-labeled sulfophthalocyanines: Synthesis and biodistribution, Bioorg. Med. Chem. Lett., 2011, 21, 7470–7473.

    Article  CAS  Google Scholar 

  35. H. Tian, H. Ali, J. E. van Lier, Synthesis of water soluble trisulfonated phthalocyanines via palladium catalysed cross coupling reactions, Tetrahedron Lett., 2000, 41, 8435–8438.

    Article  CAS  Google Scholar 

  36. M. S. O’Reilly, L. Holmgren, C. Chen, J. Folkman, Angio-statin induces and sustains dormancy of human primary tumors in mice, Nat. Med., 1996, 2, 689–692.

    Article  Google Scholar 

  37. K. Hamacher, H. H. Coenen, G. Stocklin, Efficient stereo-specific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution, J. Nucl. Med., 1986, 27, 235–238.

    CAS  Google Scholar 

  38. M. Bergeron, J. Cadorette, J. F. Beaudoin, M. D. Lepage, G. Robert, V. Selivanov, M. A. Tétrault, N. Viscogliosi, J. P. Noremberg, R. Fontaine, R. Lecomte, Performance evaluation of the LabPET (APD-based digital PET) scanner, IEEE Trans. Nucl. Sci., 2009, 56, 10–16.

    Article  Google Scholar 

  39. V. Selivanov, Y. Picard, J. Cadorette, S. Rodrigue, R. Lecomte, Detector response models for statistical iterative image reconstruction in high resolution PET, IEEE Trans. Nucl. Sci., 2000, 47, 1168–1175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan E. van Lier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauchon, N., Turcotte, E., Lecomte, R. et al. Predicting efficacy of photodynamic therapy by real-time FDG-PET in a mouse tumour model. Photochem Photobiol Sci 11, 364–370 (2012). https://doi.org/10.1039/c1pp05294b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05294b

Navigation