Skip to main content

Advertisement

Log in

Effective photoinactivation of Gram-positive and Gram-negative bacterial strains using an HIV-1 Tat peptide—porphyrin conjugate

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstrat

Given that cell-penetrating peptides (CPP) are cationic and often amphipathic, similar to membrane-active antimicrobial peptides, it may be possible to use CPP conjugation to improve the delivery of photosensitisers for antimicrobial photodynamic therapy (antimicrobial PDT). We investigated the possibility of using a Tat peptide to deliver the photosensitiser, tetrakis(phenyl)porphyrin (TPP) and kill bacteria. The Tat peptide is a positively-charged mammalian cell-penetrating peptide with potent antimicrobial activity but no haemolytic activity. Fluorescence spectroscopy revealed that the bioconjugate can bind to and/or be incorporated into all bacterial species tested. All species were susceptible to the Tat-porphyrin, with the bactericidal effect being dependent on both the concentration and the light dose. Using the highest light dose, treatment with the Tat-porphyrin achieved reductions of 6.6 log10 and 6.37 log10 in the viable counts of Staphylococcus aureus and Streptococcus pyogenes, and reductions of 5.74 log10 and 6.6 log10 in the viable counts of Pseudomonas aeruginosa and Escherichia coli. Moreover, the Tat moiety appears to confer antimicrobial properties to the conjugate, particularly for the Gram positive strains, based on the observation of dark toxicity using 1 μM of Tat-porphyrin. Finally, the conjugate induced membrane destabilization by synergistic action of the peptide and PDT, resulting in carboxyfluorescein leakage from bacterial membrane-mimicking liposomes. These findings demonstrate that the use of CPP to deliver a photosensitiser is an effective way of improving the uptake and the treatment efficacy of antimicrobial PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. Jori, S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  PubMed  Google Scholar 

  3. T. Maisch, Antimicrobial photodynamic therapy: useful in the future?, Lasers Med. Sci., 2007, 22, 83–91.

    Article  PubMed  Google Scholar 

  4. T. Dai, Y. Y. Huang, M. R. Hamblin, Photodynamic therapy for localized infections–state of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    Article  CAS  Google Scholar 

  5. N. Komerik, A. J. MacRobert, Photodynamic therapy as an alternative antimicrobial modality for oral infections, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 487–504.

    Article  PubMed  Google Scholar 

  6. M. Wilson, Bactericidal effect of laser light and its potential use in the treatment of plaque-related diseases, Int. Dent. J., 1994, 44, 181–189.

    CAS  PubMed  Google Scholar 

  7. M. Wilson, Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease, J. Appl. Bacteriol., 1993, 75, 299–306.

    Article  CAS  PubMed  Google Scholar 

  8. S. Choudhary, K. Nouri, M. L. Elsaie, Photodynamic therapy in dermatology: a review, Lasers Med. Sci., 2009, 24, 971–980.

    Article  PubMed  Google Scholar 

  9. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  10. P. S. Zolfaghari, S. Packer, M. Singer, S. P. Nair, J. Bennett, C. Street, M. Wilson, In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent, BMC Microbiol., 2009, 9, 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. B. Zeina, J. Greenman, W. M. Purcell, B. Das, Killing of cutaneous microbial species by photodynamic therapy, Br. J. Dermatol., 2001, 144, 274–278.

    Article  CAS  PubMed  Google Scholar 

  12. P. A. Lambert, Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria, Symp. Ser. Soc. Appl. Microbiol., 2002 46S-54S.

    Google Scholar 

  13. S. P. Denyer, J. Y. Maillard, Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria, J. Appl. Microbiol., 2002, 92, s1 35S-45S.

    Google Scholar 

  14. L. Leive, The barrier function of the gram-negative envelope, Ann. N. Y. Acad. Sci., 1974, 235, 109–129.

    Article  CAS  PubMed  Google Scholar 

  15. R. E. Hancock, Alterations in outer membrane permeability, Annu. Rev. Microbiol., 1984, 38, 237–264.

    Article  CAS  PubMed  Google Scholar 

  16. Z. Malik, H. Ladan, Y. Nitzan, Photodynamic Inactivation of Gram-Negative Bacteria - Problems and Possible Solutions, J. Photochem. Photobiol., B, 1992, 14, 262–266.

    Article  CAS  Google Scholar 

  17. G. Bertoloni, F. Rossi, G. Valduga, G. Jori, J. Vanlier, Photosensitizing Activity of Water-Soluble and Lipid-Soluble Phthalocyanines on Escherichia-Coli, FEMS Microbiol. Lett., 1990, 71, 149–155.

    Article  CAS  Google Scholar 

  18. M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood, T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49, 941–951.

    Article  CAS  PubMed  Google Scholar 

  19. G. P. Tegos, M. Anbe, C. Yang, T. N. Demidova, M. Satti, P. Mroz, S. Janjua, F. Gad, M. R. Hamblin, Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation, Antimicrob. Agents Chemother., 2006, 50, 1402–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Nitzan, M. Gutterman, Z. Malik, B. Ehrenberg, Inactivation of gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  PubMed  Google Scholar 

  21. R. Bonnett, D. G. Buckley, T. Burrow, A. B. B. Galia, B. Saville, S. P. Songca, Photobactericidal Materials Based on Porphyrins and Phthalocyanines, J. Mater. Chem., 1993, 3, 323–324.

    Article  CAS  Google Scholar 

  22. T. A. Dahl, W. R. Midden, P. E. Hartman, Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen, J. Bacteriol., 1989, 171, 2188–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Perria, M. Carai, A. Falzoi, G. Orunesu, A. Rocca, G. Massarelli, N. Francaviglia, G. Jori, Photodynamic therapy of malignant brain tumors: clinical results of, difficulties with, questions about, and future prospects for the neurosurgical applications, Neurosurgery, 1988, 23, 557–563.

    Article  CAS  PubMed  Google Scholar 

  24. B. Ehrenberg, Z. Malik, Y. Nitzan, H. Ladan, F. M. Johnson, G. Hemmi, J. L. Sessler, The Binding and Photosensitization Effects of Tetrabenzoporphyrins and Texaphyrin in Bacterial-Cells, Lasers Med. Sci., 1993, 8, 197–203.

    Article  Google Scholar 

  25. G. Bertoloni, F. Rossi, G. Valduga, G. Jori, H. Ali, J. E. van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells, Microbios, 1992, 71, 33–46.

    CAS  PubMed  Google Scholar 

  26. D. A. Caminos, M. B. Spesia, P. Pons, E. N. Durantini, Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin, Photochem. Photobiol. Sci., 2008, 7, 1071–1078.

    Article  CAS  PubMed  Google Scholar 

  27. M. Lindgren, M. Hallbrink, A. Prochiantz, U. Langel, Cell-penetrating peptides, Trends Pharmacol. Sci., 2000, 21, 99–103.

    Article  CAS  PubMed  Google Scholar 

  28. C. Palm, S. Netzereab, M. Hallbrink, Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects, Peptides, 2006, 27, 1710–1716.

    Article  CAS  PubMed  Google Scholar 

  29. R. E. Hancock, G. Diamond, The role of cationic antimicrobial peptides in innate host defences, Trends Microbiol., 2000, 8, 402–410.

    Article  CAS  PubMed  Google Scholar 

  30. R. I. Lehrer, T. Ganz, Antimicrobial peptides in mammalian and insect host defence, Curr. Opin. Immunol., 1999, 11, 23–27.

    Article  CAS  PubMed  Google Scholar 

  31. M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, 2002, 415, 389–395.

    Article  CAS  PubMed  Google Scholar 

  32. N. Nekhotiaeva, A. Elmquist, G. K. Rajarao, M. Hallbrink, U. Langel, L. Good, Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides, FASEB J, 2004, 18, 394–396.

    Article  CAS  PubMed  Google Scholar 

  33. H. G. Boman, B. Agerberth, A. Boman, Mechanisms of Action on Escherichia-Coli of Cecropin-P1 and Pr-39, 2 Antibacterial Peptides from Pig Intestine, Infection and Immunity, 1993, 61, 2978–2984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. K. Sadler, K. D. Eom, J. L. Yang, Y. Dimitrova, J. P. Tam, Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7, Biochemistry, 2002, 41, 14150–14157.

    Article  CAS  PubMed  Google Scholar 

  35. B. Skerlavaj, D. Romeo, R. Gennaro, Rapid Membrane Permeabilization and Inhibition of Vital Functions of Gram-Negative Bacteria by Bactenecins, Infection and Immunity, 1990, 58, 3724–3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Tunnemann, R. M. Martin, S. Haupt, C. Patsch, F. Edenhofer, M. C. Cardoso, Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells, FASEB J., 2006, 20, 1775–1784.

    Article  PubMed  CAS  Google Scholar 

  37. M. Zhao, R. Weissleder, Intracellular cargo delivery using tat peptide and derivatives, Med. Res. Rev., 2004, 24, 1–12.

    Article  PubMed  CAS  Google Scholar 

  38. H. J. Jung, K. S. Jeong, D. G. Lee, Effective antibacterial action of Tat (47-58) by increased uptake into bacterial cells in the presence of trypsin, J. Microbiol. Biotechnol., 2008, 18, 990–996.

    CAS  PubMed  Google Scholar 

  39. H. J. Jung, Y. Park, K. S. Hahm, D. G. Lee, Biological activity of Tat (47-58) peptide on human pathogenic fungi, Biochem. Biophys. Res. Commun., 2006, 345, 222–228.

    Article  CAS  PubMed  Google Scholar 

  40. M. Sibrian-Vazquez, J. Ortiz, I. V. Nesterova, F. Fernandez-Lazaro, A. Sastre-Santos, S. A. Soper, M. G. Vicente, Synthesis and properties of cell-targeted Zn(II)-phthalocyanine-peptide conjugates, Bioconjugate Chem., 2007, 18, 410–420.

    Article  CAS  Google Scholar 

  41. C. Tanielian, C. Wolff, Porphyrin-Sensitized Generation of Singlet Molecular Oxygen: Comparison of Steady-State and Time-Resolved Methods, J. Phys. Chem., 1995, 99, 9825–9830.

    Article  CAS  Google Scholar 

  42. R. F. Chen, J. R. Knutson, Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers, Anal. Biochem., 1988, 172, 61–77.

    Article  CAS  PubMed  Google Scholar 

  43. H. Mojzisova, S. Bonneau, P. Maillard, K. Berg, D. Brault, Photosensitizing properties of chlorins in solution and in membrane-mimicking systems, Photochem. Photobiol. Sci., 2009, 8, 778–787.

    Article  CAS  PubMed  Google Scholar 

  44. J. P. Gratton, J. Yu, J. W. Griffith, R. W. Babbitt, R. S. Scotland, R. Hickey, F. J. Giordano, W. C. Sessa, Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo, Nat. Med., 2003, 9, 357–362.

    Article  CAS  PubMed  Google Scholar 

  45. H. Xia, Q. Mao, B. L. Davidson, The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from recombinant viral vectors, Nat. Biotechnol., 2001, 19, 640–644.

    Article  CAS  PubMed  Google Scholar 

  46. D. Derossi, A. H. Joliot, G. Chassaing, A. Prochiantz, The third helix of the Antennapedia homeodomain translocates through biological membranes, J. Biol. Chem, 1994, 269, 10444–10450.

    Article  CAS  PubMed  Google Scholar 

  47. I. M. Kaplan, J. S. Wadia, S. F. Dowdy, Cationic TAT peptide transduction domain enters cells by macropinocytosis, J. Controlled Release, 2005, 102, 247–253.

    Article  CAS  Google Scholar 

  48. C. Subbalakshmi, N. Sitaram, Mechanism of antimicrobial action of indolicidin, FEMS Microbiol. Lett., 1998, 160, 91–96.

    Article  CAS  PubMed  Google Scholar 

  49. H. Sugiarto, P. L. Yu, Mechanisms of action of ostrich beta-defensins against Escherichia coli, FEMS Microbiol. Lett., 2007, 270, 195–200.

    Article  CAS  PubMed  Google Scholar 

  50. W. S. Sung, I. S. Lee, D. G. Lee, Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans, J. Microbiol. Biotechnol., 2007, 17, 1797–1804.

    CAS  PubMed  Google Scholar 

  51. M. Dathe, J. Meyer, M. Beyermann, B. Maul, C. Hoischen, M. Bienert, General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides, Biochim. Biophys. Acta, Biomembr., 2002, 1558, 171–186.

    Article  CAS  Google Scholar 

  52. A. Pokorny, T. H. Birkbeck, P. F. Almeida, Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles, Biochemistry, 2002, 41, 11044–11056.

    Article  CAS  PubMed  Google Scholar 

  53. W. T. Heller, A. J. Waring, R. I. Lehrer, T. A. Harroun, T. M. Weiss, L. Yang, H. W. Huang, Membrane thinning effect of the beta-sheet antimicrobial protegrin, Biochemistry, 2000, 39, 139–145.

    Article  CAS  PubMed  Google Scholar 

  54. F. M. Marassi, S. J. Opella, P. Juvvadi, R. B. Merrifield, Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy, Biophys. J., 1999, 77, 3152–3155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. K. Matsuzaki, Magainins as paradigm for the mode of action of pore forming polypeptides, Biochim. Biophys. Acta, 1998, 1376, 391–400.

    Article  CAS  PubMed  Google Scholar 

  56. G. Jori, Photodynamic therapy of microbial infections: State of the art and perspectives, Journal of Environmental Pathology Toxicology and Oncology, 2006, 25, 505–519.

    Article  Google Scholar 

  57. W. L. Zhu, S. Y. Shin, Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action, J. Pept. Sci., 2009, 15, 345–352.

    Article  CAS  PubMed  Google Scholar 

  58. L. Huang, M. Terakawa, T. Zhiyentayev, Y. Y. Huang, Y. Sawayama, A. Jahnke, G. P. Tegos, T. Wharton, M. R. Hamblin, Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials, Nanomed.: Nanotechnol., Biol. Med., 2010, 6, 442–452.

    Article  CAS  Google Scholar 

  59. F. Pereira, Gonzales, T. Maisch, XF drugs: A new family of antibacterials, Drug News Perspect., 2010, 23, 167–174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourré, L., Giuntini, F., Eggleston, I.M. et al. Effective photoinactivation of Gram-positive and Gram-negative bacterial strains using an HIV-1 Tat peptide—porphyrin conjugate. Photochem Photobiol Sci 9, 1613–1620 (2010). https://doi.org/10.1039/c0pp00146e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00146e

Navigation