Skip to main content
Log in

Photophysical characterization and photodynamic activity of metallo 5-(4-(trimethylammonium)phenyl)-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin in homogeneous and biomimetic media

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysical properties and photodynamic effect of Zn(ii), Pd(ii), Cu(ii) and free-base 5-(4-(trimethylammonium)phenyl)-10,15,20-tris(2,4,6-trimethoxy phenyl)porphyrin (H2P) iodide have been studied in N,N-dimethylformamide (DMF) and in different biomimetic systems. The absorption, fluorescence, triplet state and singlet molecular oxygen production of the metal complexes were all referred to H2P. The photodynamic activity was first analyzed using 9,10-dimethylanthracene and guanosine 52 -monophosphate in N,N-dimethylformamide. The photooxidation processes were also investigated in benzene/benzyl-n-hexadecyldimethyl ammonium chloride/water reverse micelles. Photosensitization efficiency of these porphyrins was H2P ZnP > PdP in homogeneous solution and ZnP > H2P > PdP in micelles, whereas no photooxidation effect was detected using the Cu(ii) complex. Human erythrocytes were used as a biological membrane model. The photohemolytic activity depended on irradiation time, sensitizer and concentration of the agent. When cells were treated with 1 1/2M sensitizer, the hemolytic activity was H2P > ZnP >> CuP. However, it was H2P > ZnP CuP using 5 1/2M of the respective porphyrin. Although CuP could undergo a type I photoreaction, in all cases the photohemolytic effect considerably diminishes in anoxic conditions, indicating that an oxygen atmosphere is required for the mechanism of cellular membrane damage. The behavior of these amphiphilic metallo porphyrins provides information on the photodynamic activity of these agents in biomimetic microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Castano T. N. Demidova M. R. Hamblin Mechanisms in photodynamic therapy: part one - photosensitizers, photochemistry and cellular localization. Photodiagn. Photodynam. Therapy., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  2. A. Mitra G. I. Stables Topical photodynamic therapy for non-cancerous skin conditions. Photodiagn. Photodynam. Therapy., 2006, 3, 116–127.

    Article  CAS  Google Scholar 

  3. E. N. Durantini Photodynamic inactivation of bacteria. Curr. Bioactive Compd., 2006, 2, 127–142.

    Article  CAS  Google Scholar 

  4. G. Jori Photodynamic therapy of microbial infections: state of the art and perspectives. J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 505–519.

    Article  PubMed  Google Scholar 

  5. M. Ochsner Photophysical and photobiological processes in photodynamic therapy of tumours. J. Photochem. Photobiol., B., 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  6. M. C. DeRosa R. J. Crutchley Photosensitized singlet oxygen and its applications. Coord. Chem. Rev., 2002, 233 234, 351–371.

    Article  Google Scholar 

  7. K. Lang J. Mosinger D. M. Wagnerová Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord. Chem. Rev., 2004, 248, 321–350.

    Article  CAS  Google Scholar 

  8. M. R. Detty S. T. Gibson S. J. Wagner Current clinical photosensitizers for use in photodynamic therapy. J. Med. Chem., 2004, 47, 3897–3915

    Article  CAS  PubMed  Google Scholar 

  9. H. Ali J. E. van Lier Metal complexes as photo- and radiosensitizers. Chem. Rev., 1999, 99, 2379–2450

    Article  CAS  PubMed  Google Scholar 

  10. M. Pineiro A. L. Carvalho M. M. Pereira A. M. d’A. Rocha Gonsalves L. G. Arnaut S. J. Formosinho Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies. Chem. Eur. J., 1998, 4, 2299–2307

    Article  CAS  Google Scholar 

  11. P. Kubát J. Mosinger Photophysical properties of metal complexes of meso-tetrakis(4-sulfonatophenyl)porphyrin. J. Photochem. Photobiol., A., 1996, 96, 93–97.

    Article  Google Scholar 

  12. G. M. Garbo V. H. Fingar T. J. Wieman E. B. Noakes III P. S. Haydon P. B. Cerrito D. H. Kessel A. R. Morgan In vivo and in vitro photodynamic studies with benzochlorin iminium salts delivered by a lipid emulsion. Photochem. Photobiol., 1998, 68, 561–568.

    Article  CAS  PubMed  Google Scholar 

  13. M. E. Milanesio M. G. Alvarez E. I. Yslas C. D. Borsarelli J. J. Silber V. Rivarola E. N. Durantini Photodynamic studies of metallo 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin: photochemical characterization and biological consequences in a human carcinoma cell line. Photochem. Photobiol., 2001, 74, 14–21.

    Article  CAS  PubMed  Google Scholar 

  14. J. E. Rogers K. A. Nguyer D. C. Hufnagle D. G. MaLean W. Su K. M. Gossett A. R. Burke S. A. Vinogradov R. Pachter P. A. Fleitz Observation and interpretation of annulated porphyrins: studies on the photophysical properties of meso-tetraphenylmetelloporphyrins. J. Phys. Chem. A., 2003, 107, 11331–11339

    Article  CAS  Google Scholar 

  15. J. J. Silber A. Biasutti E. Abuin E. Lissi Interactions of small molecules with reverse micelles. Adv. Colloid Interface Sci., 1999, 82, 189–252.

    Article  CAS  Google Scholar 

  16. I. Scalise E. N. Durantini Photodynamic effect of metallo 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl) porphyrins in biomimetic media. J. Photochem. Photobiol., A., 2004, 162, 105–113.

    Article  CAS  Google Scholar 

  17. S. M. S. Chauhan P. P. Mohapatra B. Kalra T. S. Kohli S. Satapathy Biomimetic oxidation of indole-3-acetic acid and related substrates with hydrogen peroxide catalysed by 5,10,15,20-tetrakis(22,62 -dichloro-32 -sulfonatophenyl)porphyrinatoiron(iii) hydrate in aqueous solution and AOT reverse micelles. J. Mol. Catal., A., 1996, 113, 239–247.

    Article  CAS  Google Scholar 

  18. S. M. S. Chauhan B. B. Sahoo Biomimetic oxidation of ibuprofen with hydrogen peroxide catalysed by Horseradish peroxidase (HRP) and 5,10,15,20-tetrakis(22,62 -dichloro-32 -sulfonatophenyl)porphyrinatoiron(iii) and manganese(iii) hydrates in AOT reverse micelles. Bioorg. Med. Chem., 1999, 72, 629–2634

    Google Scholar 

  19. A. Juarranz A. Villanueva V. Diaz L. Rodríguez-Borlado C. Trigueros M. Ca Induced photolysis of rabbit red blood cells by several photosensitizers. Anti-Cancer Drugs., 1993, 4, 501–504.

    Article  CAS  PubMed  Google Scholar 

  20. I. Rosenthal V. Y. Shafirovich N. E. Geacintov E. Ben-Hur B. Horowitz The photochemical properties of fluoroaluminum phthalocyanine. Photochem. Photobiol., 1994, 60, 215–220.

    Article  CAS  PubMed  Google Scholar 

  21. M. Khalili L. I. Grossweiner Sensitization of photohemolysis by benzoporphyrin derivative monoacid ring A and porphyrins. J. Photochem. Photobiol., B., 1997, 37, 236–244.

    Article  CAS  Google Scholar 

  22. M. Hoebeke H. J. Schuitmaker L. E. Jannink T. M. A. R. Dubbelman A. Jakobs A. van de Vorst Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a. Photochem. Photobiol., 1997, 66, 502–508.

    Article  CAS  PubMed  Google Scholar 

  23. A. Marozienė R. Kliukienė J. Ŝarlauskas N. Ĉėnas Inhibition of phthalocyanine-sensitized photohemolysis of human erythrocytes by polyphenolic antioxidants: description of quantitative structure-activity relationships. Cancer Lett., 2002, 157, 39–44.

    Article  Google Scholar 

  24. I. B. Zavodnik L. B. Zavodnik M. J. Bryszewska The mechanism of Zn-phthalocyanine photosensitized lysis of human erythrocytes. J. Photochem. Photobiol., B., 2002, 67, 1–10.

    Article  CAS  Google Scholar 

  25. L. Kaestner A. Juzeniene J. Moan Erythrocytes - the house elves of photodynamic therapy. Photochem. Photobiol. Sci., 2004, 3, 981–989.

    Article  CAS  PubMed  Google Scholar 

  26. M. E. Milanesio M. G. Alvarez J. J. Silber V. Rivarola E. N. Durantini Photodynamic activity of monocationic and non-charged methoxyphenyl porphyrin derivatives in homogeneous and biological medium. Photochem. Photobiol. Sci., 2003, 2, 926–933.

    Article  CAS  PubMed  Google Scholar 

  27. M. G. Alvarez F. Príncipe M. E. Milanesio V. Rivarola Photodynamic damage induced by a monocationic porphyrin derivative in a human carcinoma cell line. Int. J. Biochem. Cell Biol., 2005, 37, 2504–2512

    Article  CAS  PubMed  Google Scholar 

  28. M. G. Alvarez N. B. Rumie Vittar F. Principe J. R. Bergesse M. C. Romanini S. Romanini M. Bertuzzi V. Rivarola Pharmacokinetic and phototherapeutic studies of monocationic methoxyphenylporphyrin derivative. Photodiagn. Photodynam. Therapy., 2004, 1, 335–344.

    Article  CAS  Google Scholar 

  29. G. Valduga S. Nonell E. Reddi G. Jori S. E. Braslavsky The production of singlet molecular oxygen by zinc(ii) phthalocyanine in ethanol and in unilamellar vesicles. Chemical quenching and phosphorescence studies. Photochem. Photobiol., 1988, 48, 1–5.

    Article  CAS  PubMed  Google Scholar 

  30. J. D. Spikes Quantum yields and kinetics of the photobleaching of hematoporphyrin, photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin. Photochem. Photobiol., 1992, 55, 792–808.

    Article  Google Scholar 

  31. H. A. Montejano M. Gervaldo S. G. Bertolotti The excited-states quenching of resazurin and resorufin by p-benzoquinones in polar solvents. Dyes Pigm., 2005, 64, 117–124.

    Article  CAS  Google Scholar 

  32. R. W. Redmond J. N. Gamlin A compilation of singlet yields from biologically relevant molecules. Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  33. R. Bonnett S. Ioannou A. G. James C. W. Pitt M. M. Z. Soe Synthesis and film-forming properties of metal complexes of octadecyl ethers of 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin. J. Mater. Chem., 1993, 3, 793–799.

    Article  CAS  Google Scholar 

  34. D. J. Quimby F. R. Longo Luminescence studies on several tetraarylporphins and their zinc derivatives. J. Am. Chem. Soc., 1975, 97, 5111–5117

    Article  CAS  Google Scholar 

  35. D. L. Akins H.-R. Zhu C. Guo Aggregation of tetraaryl-substituted porphyrins in homogeneous solution. J. Phys. Chem., 1996, 100, 5420–5425

    Article  CAS  Google Scholar 

  36. G. Csík E. Balog I. Voszka F. Tölgyesi D. Oulmi Ph. Maillard M. Momenteau Glycosylated derivatives of tetraphenyl porphyrin: photophysical characterization, self-aggregation and membrane binding. J. Photochem. Photobiol., B., 1998, 44, 216–224.

    Article  Google Scholar 

  37. J. W. Owens R. Smith R. Robinson M. Robins Photophysical properties of porphyrins, phthalocyanines and benzochlorins. Inorg. Chim. Acta., 1998, 279, 226–231.

    Article  CAS  Google Scholar 

  38. S. L Murov I. Carmichael and G. L. Hug, Handbook of Photochemistry, Revised and Expanded, M. Dekker, New York, 2nd edn, 1993

    Google Scholar 

  39. A. Gomes E. Fernandes J. L. F. C. Lima Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods., 2005, 65, 45–80.

    Article  CAS  PubMed  Google Scholar 

  40. P. Kubát K. Lang P. Anzenbacher Jr. K. Jursíková V. Král B. Ehrenberg Interaction of novel cationic meso-tetraphenylporphyrins in the ground and excited states with DNA and nucleotides. J. Chem. Soc., Perkin Trans. 1., 2000, 933–941.

    Google Scholar 

  41. K. Hirakawa S. Kawanishi T. Hirano H. Segawa Guanine-specific DNA oxidation photosensitized by the tetraphenylporphyrin phosphorus(v) complex via singlet oxygen generation and electron transfer. J. Photochem. Photobiol., B., 2007, 87, 209–217.

    Article  CAS  Google Scholar 

  42. F. M. Engelmann S. V. O. Rocha H. E. Toma K. Araki M. S. Baptista Determination of n-octanol/water partition and membrane binding of cationic porphyrins. Int. J. Pharm., 2007, 329, 12–18.

    Article  CAS  PubMed  Google Scholar 

  43. J. C. Stockert A. Juarranz A. Villanueva S. Nonell R. W. Horobin A. T. Soltermann V. Rivarola L. L. Colombo J. Espada M. Ca Photodynamic therapy: selective uptake of photosensitizing drugs into tumor cells. Curr. Top. Pharmacol., 2004, 8, 185–217.

    CAS  Google Scholar 

  44. J. A. Hampton D. Skalkos P. M. Taylor S. H. Selman Iminium salt of copper benzochlorin (CDS1), a novel photosensitizer for photodynamic therapy: mechanism of cell killing. Photochem. Photobiol., 1993, 58, 100–105.

    Article  CAS  PubMed  Google Scholar 

  45. B. M. Aveline R. W. Redmond Can cellular phototoxicity be accurately predicted on the basic of sensitizer photophysics?. Photochem. Photobiol., 1999, 69, 306–316.

    Article  CAS  PubMed  Google Scholar 

  46. M. Suwalsky P. Orellana M. Avello F. Villena Protective effect of Ugni molinae Turcz against oxidative damage of human erythrocytes. Food Chem. Toxicol., 2007, 45, 130–135.

    Article  CAS  PubMed  Google Scholar 

  47. B. M. Aveline R. M. Sattler R. W. Redmond Environmental effects on cellular photosensitization: correlation of phototoxicity mechanism with transient absorption spectroscopy measurements. Photochem. Photobiol., 1998, 68, 51–62.

    Article  CAS  PubMed  Google Scholar 

  48. G. Jori L. Schindl A. Schindl L. Polo Novel approaches towards a detailed control of the mechanism and efficiency of photosensitized process in vivo. J. Photochem. Photobiol., A., 1996, 102, 101–107.

    Article  CAS  Google Scholar 

  49. T. M. A. R. Dubbelman J. Steveninck Photodynamically induced damage to cellular functions and its relation to cell death. J. Photochem. Photobiol., B., 1990, 6, 345–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo N. Durantini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milanesio, M.E., Alvarez, M.G., Bertolotti, S.G. et al. Photophysical characterization and photodynamic activity of metallo 5-(4-(trimethylammonium)phenyl)-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin in homogeneous and biomimetic media. Photochem Photobiol Sci 7, 963–972 (2008). https://doi.org/10.1039/b804848g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b804848g

Navigation