Skip to main content
Log in

Liver autofluorescence properties in animal model under altered nutritional conditions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Autofluorescence spectroscopy is a promising and powerful approach for an in vivo, real time characterization of liver functional properties. In this work, preliminary results on the dependence of liver autofluorescence parameters on the nutritional status are reported, with particular attention to vitamin A and lipid accumulation in liver tissue. Normally fed and 24 h starving rats were used as animal models. Histochemical and autofluorescence analysis showed that lipids and vitamin A colocalize in the liver parenchyma. Fasting condition results in a parallel increase in both lipids and vitamin A. Autofluorescence imaging and microspectrofluorometric analysis carried out on unfixed, unstained tissue sections under 366 nm excitation, evidenced differences in both spectral shape and response to continuous irradiation between liver biopsies from fed and starving rats. As to photobleaching, in particular, fitting analysis evidenced a reduction of about 85% of the signal attributable solely to vitamin A during the first 10 s of irradiation. The tissue whole emission measured in fed and starving rat livers exhibited reductions of about 35% and 52%, respectively, that are closely related to vitamin A contents. The findings open interesting perspectives for the set up of an in situ, real time diagnostic procedure for the assessment of liver lipid accumulation, exploiting the photophysical properties of vitamin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Wagnières, W. M. Star, B. C. Wilson, In vivo fluorescence spectroscopy and imaging for oncological applications, Photochem. Photobiol., 1998, 68, 603–632.

    Article  Google Scholar 

  2. G. Bottiroli and A. C. Croce, The autofluorescence spectroscopy of cells and tissue as a tool for biomedical diagnosis, in Comprehensive Series in Photosciences, Lasers and Current Optical Techniques in Biology, ed. G. Palumbo and R. Pratesi, RSC, Books and Databases, Cambridge, vol. 5, 2004, pp. 189–210.

    Google Scholar 

  3. A. C. Croce, A. Ferrigno, M. Vairetti, R. Bertone, I. Freitas, G. Bottiroli, Autofluorescence properties of isolated rat hepatocytes under different metabolic conditions, Photochem. Photobiol. Sci., 2004, 3, 920–926.

    Article  CAS  Google Scholar 

  4. M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation, Hepatology, 1995, 21, 1602–1609.

    Article  CAS  Google Scholar 

  5. B. Vollmar, M. Burkhardt, T. Minor, H. Klauke, M. D. Menger, High resolution microscopic determination of hepatic NADH fluorescence for in vivo monitoring of tissue oxygenation during hemorragic shock and resuscitation, Microvasc. Res., 1997, 54, 164–173.

    Article  CAS  Google Scholar 

  6. H. Klauke, T. Minor, B. Vollmar, W. Isselhard, M. D. Menger, Microscopic analysis of NADH fluorescence during aerobic and anaerobic liver preservation conditions: A noninvasive technique for assessment of hepatic metabolism, Cryobiology, 1998, 36, 108–114.

    Article  CAS  Google Scholar 

  7. A. C. Croce, A. Ferrigno, M. Vairetti, R. Bertone, I. Freitas, G. Bottiroli, Autofluorescence spectroscopy of rat liver during experimental transplantation procedure. An approach for hepatic metabolism assessment, Photochem. Photobiol. Sci., 2005, 4, 583–590.

    Article  Google Scholar 

  8. A. C. Croce, U. De Simone, M. Vairetti, A. Ferrigno, G. Bottiroli, Autofluorescence properties of rat liver under hyper metabolic conditions, Photochem. Photobiol. Sci., 2007, 6, 1202–1209.

    Article  CAS  Google Scholar 

  9. G. Vendemmiale, I. Grattagliano, P. Caraceni, G. Caraccio, M. Domenicali, M. Dall’Agata, F. Trevisani, F. Guerrieri, M. Bernardi, E. Altomare, Mitochondrial oxidative injury and energy metabolism alteration in rat fatty liver: effect of nutritional status, Hepatology, 2001, 33, 808–815.

    Article  Google Scholar 

  10. J. Hupert, K. N. Cunningham, S. Mobarban, H. J. Friedman, T. J. Layden, Effects of acute starvation on vitamin A status in rats, J. Am. Coll. Nutrit, 1989, 8, 644–649.

    Article  CAS  Google Scholar 

  11. G. Van der Berghe, The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism, J. Inherit Metab. Dis., 1991, 14, 407–420.

    Article  Google Scholar 

  12. M. Suematsu, M. Oda, H. Suzuki, H. Kaneko, N. Watanabe, T. Furusho, S. Masushige, M. Tsuchiya, Intravital and electron microscopic observation of Ito cells in rat hepatic microcirculation, Microvasc. Res., 1993, 46, 28–42.

    Article  CAS  Google Scholar 

  13. W. S. Blaner, Retinoid (Vitamin A) metabolism and the liver, in The Liver and Pathobiology, E. D. I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jakoby, D. A. Schachter and D. A. Shafritz, Raven Press Ltd, New York, 3rd edn, 1994, pp. 529–541.

    Google Scholar 

  14. K. B. Andersen, A. Nilsson, H. K. Blomhoff, T. B. Øyes, O. S. Gabrielsen, O. S. G. Norum, R. Blomhoff, Direct mobilization of retinol from hepatic perisinusoidal stellate cells to plasma, J. Biol. Chem., 1992, 267, 1340–1344.

    Article  CAS  Google Scholar 

  15. K. Wake, K. Motomatsu, H. Senoo, A. Masuda, E. Adachi, Improved Kupffer’s gold chloride method for demonstrating the stellate cells storing retinols (vitamin A) in the liver and extrahepatic organs of vertebrates, Stain Technol., 1986, 6, 193–200.

    Article  Google Scholar 

  16. S. D. Fowler, P. Greenspan, Application of Nile Red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections, J. Histochem. Cytochem., 1985, 33, 833–837.

    Article  CAS  Google Scholar 

  17. A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, G. Bottiroli, Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins, Photochem. Photobiol., 2003, 77, 309–318.

    Article  CAS  Google Scholar 

  18. D. W. Marquardt, An algorithm for least-squares estimation of non-linear parameters, J. Soc. Indust. Appl. Math., 1963, 11, 431–441.

    Article  Google Scholar 

  19. A. C. Croce, A. Spano, D. Locatelli, S. Barni, L. Sciola, G. Bottiroli, Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity, Photochem. Photobiol., 1999, 69, 364–374.

    Article  CAS  Google Scholar 

  20. M. Burkhardt, B. Vollmar, M. D. Menger, In vivo analysis of hepatic NADH fluorescence. Methodological approach to exclude Ito-cell vitamin A-derived autofluorescence, Adv. Exp. Biol., 1998, 454, 83–898.

    Article  CAS  Google Scholar 

  21. R. DiAugustine, J. M. Schaefer, J. R. Fouts, Hepatic lipid droplets, Biochem. J., 1973, 132, 323–327.

    Article  CAS  Google Scholar 

  22. S. Udenfriend, Fluorescence Assay in Biology and Medicine. Molecular Biology. An International Series of Monographs and Textboosks, ed. B. Horecker, N. Kaplan, J. Marmur and H. A. Scheraga, Academic Press, New York, London, 1969, vol. 2, pp. 356–360.

    Google Scholar 

  23. C. K. Sun, X. Y. Zhang, A. Zimmermann, G. Davis, A. M. Wheatley, Effect of ischemia-reperfusion injury on the microcirculation of the steatotic liver of the Zucker rat, Transplantation, 2001, 72, 1625–1631.

    Article  CAS  Google Scholar 

  24. A. M. Seifalian, C. Piasecki, A. Agarwal, B. R. Davison, The effect of graded steatosis on flow in the hepatic parenchymal microcirculation, Transplantation, 1999, 68, 780–784.

    Article  CAS  Google Scholar 

  25. N. R. Katz, W. Fischer, S. Giffohorn, Distribution of enzymes of fatty acid and ketone body metabolism in periportal and perivenous rat-liver tissue, Eur. J. Biochem., 1983, 135, 103–107.

    Article  CAS  Google Scholar 

  26. R. Blomhoff, M. Rasmussen, A. Nilsson, K. R. Norum, T. Berg, W. S. Blaner, M. Kato, J. S. Mertz, DeW. S. Goodman, U. Eriksson, P. A. Peterson, Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells, J. Biol. Chem., 1985, 260, 13560–13565.

    Article  CAS  Google Scholar 

  27. K. Wake, T. Sato, Intralobular heterogeneity of perisinusoidal stellate cells in porcine liver, Cell Tissue Res., 1993, 273, 227–237.

    Article  CAS  Google Scholar 

  28. N. Higashi, H. Senoo, Distribution of vitamin A-storing lipid droplets in hepatic stellate cells in liver lobules - A comparative study, Anat. Rec. A Discov. Mol. Cell Evol. Biol., 2003, 271, 240–248.

    Article  Google Scholar 

  29. N. Higashi, M. Sato, N. Kojima, T. Irie, K. Kawamura, A. Mabuchi, H. Senoo, Vitamin A storage in hepatic stellate cells in the regenerating rat liver: with special reference to zonal heterogeneity, Anat. Rec. A Discov. Mol. Cell Evol. Biol., 2005, 286, 899–907.

    Article  Google Scholar 

  30. Z. Zou, W. Ekataksin, K. Wake, Zonal and regional differences identified from precision mapping of vitamin A-storing lipid droplets of the hepatic stellate cells in pig liver: A novel concept of addressing the intralobular area of heterogeneity, Hepatology, 1998, 27, 1098–1108.

    Article  CAS  Google Scholar 

  31. T. Shintaku, T. Murta, K. Yamaguchi, T. Makita, Detection of retinyl palmitate and retinol in the liver of mice injected with excessive amounts of retinyl acetate, J. Vet. Med. Sci., 1998, 60, 471–477.

    Article  CAS  Google Scholar 

  32. C. P. Day, O. F. James, Steatohepatisis: A tale of two hits?, Gastroenterology, 1998, 114, 842–845.

    Article  CAS  Google Scholar 

  33. G. V. Chaves, S. E. Pereira, C. J. Saboya, A. Ramalho, Non-alcoholic fatty liver disease and its relationship with the nutritional status of vitamin A in individuals with class III obesity, Obes. Surg., 2008, 18, 378–385.

    Article  Google Scholar 

  34. V. N. Singh, M. Singh, T. A. Venkitasubramanian, Early effects of feeding vitamin A: mechanism of fatty liver production in rats, J. Lipid Res., 1969, 10, 395–401.

    Article  CAS  Google Scholar 

  35. N. M. Delzenne, N. A. Hernaux, H. S. Taper, A new model of acute liver steatosis induced in rats by fasting followed by refeeding a high carcohydrate-fat free diet. Biochemical and morphological analysis, J. Hepatol., 1997, 26, 880–885.

    Article  CAS  Google Scholar 

  36. H. Bell, A. Nilsson, N. K. Norum, L. H. Pedersen, N. Raknerud, M. Rasmussen, Retinol and retinyl esters in patients with alcoholic liver disease, J. Hepatol., 1989, 8, 26–31.

    Article  CAS  Google Scholar 

  37. A. C. Croce, U. Bareato, D. Neri, I. Freitas, G. Bottiroli, Autofluorescence study of human steatotic liver, Lasers Surg. Med., 2005, 17, Suppl., 66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bottiroli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croce, A.C., De Simone, U., Vairetti, M. et al. Liver autofluorescence properties in animal model under altered nutritional conditions. Photochem Photobiol Sci 7, 1046–1053 (2008). https://doi.org/10.1039/b804836c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b804836c

Navigation