Skip to main content
Log in

Theoretical and experimental study of the Norrish I photodissociation of aromatic ketones

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A set of selected acetophenone derivatives was investigated using absorption and emission spectroscopy, laser flash photolysis and DFT calculations. The triplet state lifetimes and the activation energy of the cleavage reaction were measured. Computed triplet-triplet absorption spectra were found in very good agreement with the experimental ones. Bond dissociation energies, activation energies, partial charges, ground state geometries were calculated. The transition state theory TST was successfully used to calculate the cleavage rate constants: a very good correlation was found between the experimental and the calculated values. It is found that the entropy change influences the preexponential factor. This study also points out the role of the partial charges in the transition state, although this effect alone does not account for the reaction rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gilbert, J. Baggott and P. J. Wagner, in Essentials of Molecular Photochemistry, CRC Press, Bocca Raton, 1991.

    Google Scholar 

  2. C.H. Bamford and R.G.W. Norrish, Photodecompositionofaldehydes and ketones, J. Chem. Soc., 1935, 1504–1511.

    Google Scholar 

  3. A. Sevin, B. Bigot and A. Devaquet, Theoretical simulation (ab initio SCF) of the photochemical cleavage of a r bond adjoining an unsaturated system, Tetrahedron, 1978, 34(22), 3275–3280.

    Google Scholar 

  4. L. Salem, Current Status of Transition-State Theory, J. Am. Chem. Soc., 1974, 96, 3486–3501.

    Article  CAS  Google Scholar 

  5. Arvi Rauk, in Orbital Interaction Theory of Organic Chemistry, Wiley, N. Y., 2nd edn, 2000, Pp. 212–216.

    Book  Google Scholar 

  6. N. J. Turro, in Modern Molecular Photochemistry, University Science Book, California, 1991, Pp. 206–231.

    Google Scholar 

  7. A. K. Chandra and K. Sumathi, MINDO/3 configuration interaction studies of a -cleavage processes in organic photochemistry, J. Pho-tochem. Photobiol., A, 1990, 52(2), 213–234.

    Google Scholar 

  8. W. G. Dauben, L. Salem and N. J. Turro, Classification of photochemical reactions, Acc. Chem. Res., 1975, 8(2), 41–54.

    Google Scholar 

  9. H.-G. Heine, Photochemical a-cleavage of ketones in solution. III. Do radical-stabilizing substituents influence the rate of a-cleavage?, Tetra-hedron Lett., 1972, 33, 3411–3414.

    Article  Google Scholar 

  10. H.-G. Heine, Photochemical a-cleavage of ketones in solution. IV. Photolysis of benzoin ethers, Tetrahedron Lett., 1972, 13, 4755–4758.

    Article  Google Scholar 

  11. H.-G. Heine, W. Hartmann, D. R. Kory, J. G. Magyar, C. E. Hoyle, J. K. McVey and F. D. Lewis, Photochemical a cleavage and free-radical reactions of some deoxybenzoins, J. Org. Chem., 1974, 39(5), 691–698.

    Google Scholar 

  12. F. D. Lewis, C. H. Hoyle, J. G. Magyar, H.-G. Heine and W. Hartmann, Photochemical a-cleavage of ketones in solution. VI. Substituent effects on the photochemical a-cleavage of deoxybenzoin, J. Org. Chem., 1975, 40, 488–492.

    Article  CAS  Google Scholar 

  13. L. G. Arnaut and S. J. Formosinho, Photochemical acleavage of ketones as radiationless transitions, J. Photochem., 1985, 31(2-3), 315–332.

    Article  CAS  Google Scholar 

  14. M. V. Encina, E. A. Lissi, E. Lemp, A. Zanocco and J. C. Scaiano, Temperature dependence of the photochemistry of aryl alkyl ketones, J. Am. Chem. Soc., 1983, 105.7, 1856–1860.

    Article  CAS  Google Scholar 

  15. H.-G. Heine, W. Hartmann, F. D. Lewis and R. T. Lauterbach, Photochemical a-cleavage of ketones in solution. VIII. Photochemical reactivity of some bridgehead phenylketones, J. Org. Chem., 1976, 41, 1907–1912.

    Article  CAS  Google Scholar 

  16. B. Bigot, A. Devaquet and N. J. Turro, Natural correlation diagrams. A unifying theoretical basis for analysis of n orbital initiated ketone photoreactions, J. Am. Chem. Soc., 1981, 1031, 6–12.

    Article  CAS  Google Scholar 

  17. X. Martin, M. Moreno and J. M. Lluch, A CI all-single-excitations study of the Norrish type I process in acetyl chloride, J. Phys. Chem., 1993, 97(47), 12186–12188.

    Article  CAS  Google Scholar 

  18. K. Sumathi and A. K. Chandra, A theoretical study of the photochemical a -cleavage processes in symmetric and nonsymmetric ketones, J. Photochem. Photobiol., A, 1987, 40(2-3), 265–277.

    Google Scholar 

  19. H. Sakurai and S. Kato, A theoretical study of the Norrish type I reaction of acetone, THEOCHEM, 1999, 461–462. 145-152.

    Google Scholar 

  20. Y. Haas, Photochemical a-cleavage of ketones: revisiting acetone, Photochem. Photobiol. Sci., 2004, 3(1), 6–16.

    Google Scholar 

  21. T. I. Solling, I. W.-G. Diau, C. Kötting, S. De Feyter and A. H. Zewail, Femtochemistry of Norrish type-I reactions: IV. Highly excited ketones-experimental, Chem. Phys. Chem., 2002, 3, 79–97.

    Article  CAS  Google Scholar 

  22. X. Allonas, F. Morlet-Savary, J. Laleve’e and J.-P. Fouassier, A photodissociationreaction: experimental and computational study of 2-hydroxy-2,2-dimethylacetophenone, Photochem. Photobiol., 2006, 82, 88–94.

    Article  CAS  Google Scholar 

  23. J. Laleve’e, X. Allonas, S. Jradi and J.-P. Fouassier, Role of the Medium on the Reactivity of Cleavable Photoinitiators in Photopolymerization Reactions, Macromolecules, 2006, 39, 1872–1879.

    Article  Google Scholar 

  24. J. Laleve’e, X. Allonas and J.-P. Fouassier, Investigation of cleavage processes in photoinitiators: from experiments to molecular modeling, J. Photochem. Photobiol., 2003, 159.2, 127–133.

    Article  Google Scholar 

  25. W. R. Boehme, Stereochemistry of Diels-Alder adducts. III. Preparation and rearrangement of some brominated derivatives of norbor-nanecarboxylic acids, J. Am. Chem. Soc., 1959, 81, 2762–2765.

    Article  CAS  Google Scholar 

  26. H. Langhals, I. Mergelsberg, C. Rüchardt and U. Burger, Isomeriza-tion of homoadamantane-3-carboxylic acid to homoadamantane-1-carboxylic acid, Chem. Ber., 1982, 115.4), 1509–1524.

    Article  Google Scholar 

  27. X. Allonas, J. P. Fouassier, M. Kaji and Y. Murakami, Excited state processes in a four-component photosensitive system based on a bisimidazole derivative, Photochem. Photobiol. Sci., 2003, 2(3), 224–229.

    Google Scholar 

  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, in Gaussian 94, revision E. 3, Gaussian, Inc., Pittsburgh, PA, 1995.

    Google Scholar 

  29. Coblentz Society, Inc., Evaluated Infrared Reference Spectra in the Webbook of Chemistry NIST.

  30. S. K. Ghoshal, S. K. Sarkar and G. S. Kastha, Effects of Intermolecular Hydrogen-bonding on the Luminescence Properties of Acetophenone, Characterization of Emission States, Bull. Chem. Soc. Jpn., 1981, 54, 3556–3561.

    Article  CAS  Google Scholar 

  31. H.-Y. He and W.-H. Fang, Photochemistry of Butyrophenone: Combined Complete-Active-Space Self-Consistent Field and Density Functional Theory Study of Norrish Type I and II Reactions, J. Phys. Chem. A, 2004, 108.25, 5386–5392.

    Article  CAS  Google Scholar 

  32. S. L. Murov, I. Carmichael and G. L. Hug, in Handbook of Photochemistry, ed. M. Dekker, CRC Press, N.Y., 1993.

  33. N. Akai, I. Miura, S. Kudoh, K. Shigehara and M. Nakata, Lowest electronically excited triplet states of 1,2,4,5-tetracyanobenzene and tetracyanopyrazine by matrix-isolation infrared spectroscopy combined with a density-functional-theory calculation, Bull. Chem. Soc. Jpn., 2003, 76(10), 1927–1933.

    Article  CAS  Google Scholar 

  34. H. Fischer and L. Radom, Factors controlling the addition of carbon-centered radicals to alkenes-an experimental and theoretical perspective, Angew. Chem.. Int. Ed., 2001, 40(8), 1340–1346.

    Article  CAS  Google Scholar 

  35. C. J. Cramer, in Essentials of Computational Chemistry, Theory and Models, John Wiley & Sons Ltd, West Sussex, GB, 2002.

    Google Scholar 

  36. T. L. Hill, in An Introduction to Statistical Thermodynamics, Dover Publications, New York, 1986.

    Google Scholar 

  37. P. R. P. Barreto, A. F. A. Vilela and R. Gargano, A simple program to determine the reaction rate and thermodynamic properties of reacting system, THEOCHEM, 2003, 639, 167–176.

    Article  CAS  Google Scholar 

  38. F. Jensen, in Introduction to Computational Chemistry, John Wiley & Sons Ltd, West Sussex, GB, 1999.

    Google Scholar 

  39. D. M. Huang, M. J. Monteiro and R. G. Gilbert, A Theoretical Study of Propagation Rate Coefficients for Methacrylonitrile and Acrylonitrile, Macromolecules, 1998, 31(16), 5175–5187.

    Google Scholar 

  40. D. G. Truhlar, B. C. Garrett and S. J. Klippenstein, Current Status of Transition-State Theory, J. Phys. Chem., 1996, 100.31), 12771–12800.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Allonas.

Additional information

This paper was published as part of the themed issue in honour of Jakob Wirz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietlin, C., Allonas, X., Defoin, A. et al. Theoretical and experimental study of the Norrish I photodissociation of aromatic ketones. Photochem Photobiol Sci 7, 558–565 (2008). https://doi.org/10.1039/b800546j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b800546j

Navigation