Skip to main content
Log in

Solvent cage effects: the influence of radical mass and volume on the recombination dynamics of radical cage pairs generated by photolysis of [CpCH2CH2N(CH3)C(O)(CH2)nCH3Mo(CO)3]2 (n = 3, 8, 13, 18) (Cp = η5-C5H4) complexes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemistry of the [(CpR)Mo(CO)3]2 molecules, where CpR = η5-C5H4(CH2)2C(O)NCH3(CH2)nCH3 (n = 3, 8, 13, and 18), was examined using femtosecond pump—probe transient absorption spectroscopy. The goal of this study was to investigate the importance of radical size and mass on the dynamics and efficiency of geminate radical—radical recombination. The femtosecond results demonstrated the lack of any size/mass dependence of the recombination efficiency. This finding contrasts with results from a prior study that did find a size/mass dependence using a steady-state photochemical technique. To explain these conflicting results, it is proposed that the femtosecond pump—probe results are a measurement of the efficiency of primary geminate recombination whereas the steady-state method results are a measurement of the sum of primary and secondary geminate recombination efficiencies. The size/mass dependence is evident in the latter because secondary geminate recombination is a slower diffusive recombination process and therefore depends on the steric properties of the radicals. Although the existence of primary and secondary recombination channels is often taken for granted, experimental differentiation of primary and secondary caging has proven to be difficult because it is not possible for a single experimental technique to span the entire timescale for recombination of a radical cage pair and adequately resolve these recombination pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. T. Koenig and H. Fischer, in Free Radicals, ed. J. Kochi, John Wiley, New York, 1973, vol. 1,, ch. 4.

  2. J. Franck, E. Rabinowitch Trans. Faraday Soc., 1934, 30, 120–131.

    Article  CAS  Google Scholar 

  3. J. P. Lorand, The Cage Effect Prog. Inorg. Chem., 1972, 17, 207–325.

    CAS  Google Scholar 

  4. J. L. Male, B. E. Lindfors, K. J. Covert, D. R. Tyler, The effect of radical size and mass on the cage recombination efficiency of photochemically generated radical cage pairs J. Am. Chem. Soc., 1998, 120, 13176–13186.

    Article  CAS  Google Scholar 

  5. A. E. Stiegman, D. R. Tyler, Photochemical disproportionation of metal–metal bonded carbonyl dimers Coord. Chem. Rev., 1985, 63, 217–240.

    Article  CAS  Google Scholar 

  6. T. J. Meyer, J. V. Caspar, Photochemistry of metal–metal bonds Chem. Rev., 1985, 85, 187–218.

    Article  CAS  Google Scholar 

  7. J. L. I. V. Hughey, C. R. Bock, T. J. Meyer, Flash photolysis evidence for metal-metal bond cleavage and loss of carbon monoxide in the photochemistry of bis[(η5-cyclopentadienyl) tricarbonylmolybdenum] J. Am. Chem. Soc., 1975, 97, 4440–4441.

    Article  CAS  Google Scholar 

  8. A. R. Burkett, T. J. Meyer, D. G. Whitten, Light-catalyzed substitution and disproportionation in di-p-cyclopentadienylhexacarbonyldimolybdenum J. Organomet. Chem., 1974, 67, 67–73.

    Article  CAS  Google Scholar 

  9. M. S. Wrighton, D. S. Ginley, Photochemistry of metal-metal bonded complexes. III. Photoreactivity, of hexacarbonylbis(η5-cyclopentadienyl)dimolybdenum(i) and -ditungsten(i) J. Am. Chem. Soc., 1975, 97, 4246–4251.

    Article  CAS  Google Scholar 

  10. R. M. Noyes, A treatment of chemical kinetics with special applicability to diffusion-controlled reactions J. Chem. Phys., 1954, 22, 1349–1359.

    Article  CAS  Google Scholar 

  11. B. E. Lindfors, J. L. Male, K. J. Covert, D. R. Tyler, Radical cage effects. Effect of radical mass and bond energies on cage recombination efficiencies for photochemical cage pair intermediates of [Mo2(CO)65-C5H4CH2CH2OSiMe32], [Mo2(CO)65-C5H4Me)2] and [W2(CO)65-C5H4Me)2] Chem. Commun., 1997 1687–1688.

    Google Scholar 

  12. D. A. Braden, E. E. Parrack, D. R. Tyler, Solvent cage effects. I. Effect, of radical mass and size on radical cage pair recombination efficiency. II. Is, geminate recombination of polar radicals sensitive to solvent polarity? Coord. Chem. Rev., 2001, 211, 279–294.

    Article  CAS  Google Scholar 

  13. E. Schutte, T. J. R. Weakley, D. R. Tyler, Radical cage effects in the photochemical degradation of polymers: effect of radical size and mass on the cage recombination efficiency of radical cage pairs generated photochemically from the (CpCH2CH2N(CH3)C(O)(CH2nCH32Mo2(CO)6 (n = 3, 8, 18) complexes J. Am. Chem. Soc., 2003, 125, 10319–10326.

    Article  CAS  Google Scholar 

  14. K. J. Covert, E. F. Askew, J. Grunkemeier, T. Koenig, D. R. Tyler, Cage effects in organometallic radical chemistry. Fractional cage-recombination efficiency for photochemical caged-pair intermediates of Cp′2M2(CO)6 (M = molybdenum and tungsten; Cp′ = η5-C5H4CH3J. Am. Chem. Soc., 1992, 114, 10446–10448.

    Article  CAS  Google Scholar 

  15. Q. Liu, J. K. Wang, A. H. Zewail, Femtosecond dynamics of dissociation and recombination in solvent cages Nature, 1993, 364, 427–430.

    Article  CAS  Google Scholar 

  16. B. J. Schwartz, J. C. King, C. B. Harris, The molecular basis of solvent caging Understanding Chemical Reactivity, 1994, 7, 235–248.

    CAS  Google Scholar 

  17. B. J. Schwartz, J. C. King, J. Z. Zhang, C. B. Harris, Direct femtosecond measurements of single collision dominated geminate recombination times of small molecules in liquids Chem. Phys. Lett., 1993, 203, 503–508.

    Article  CAS  Google Scholar 

  18. A. B. Oelkers, L. F. Scatena, D. R. Tyler, Femtosecond pump–probe transient absorption study of the photolysis of [Cp′Mo(CO)3]2 (Cp′ = η5-C5H4CH3); The role of translational and rotational diffusion in the radical cage effect J. Phys. Chem. A., 2007, 111, 25 5353–5360.

    Article  CAS  Google Scholar 

  19. A. R. Manning, P. Hackett, R. Birdwhistell, P. Soye, Hexacarbonylbis(η5-cyclopentadienyl)dichromium, molybdenum, and tungsten and their analogs, M25-C5H4R)2(CO)6 (M = Cr, Mo, and W; R = H, Me or PhCH2) Inorg. Syn., 1990, 28, 148–150.

    CAS  Google Scholar 

  20. D. A. Braden, E. E. Parrack, D. R. Tyler, Photochemical studies as a function of solvent viscosity. A new photochemical pathway in the reaction of (η5-C5H4Me)2Mo2(CO)6 with CCl4Photochem. Photobiol. Sci., 1, 418-420.

  21. J. L. Male, B. E. Lindfors, K. J. Covert, D. R. Tyler, Cage effects in the photochemical degradation of polymers. Studies of model complexes with different chain lengths Macromolecules, 1997, 30, 6404–6406.

    Article  CAS  Google Scholar 

  22. J. D. Harris, A. B. Oelkers, D. R. Tyler, The solvent cage effect: Is there a spin barrier to recombination of transition metal radicals? J. Am. Chem. Soc., 2007, 129, 6255–6262.

    Article  CAS  Google Scholar 

  23. See ref. 4 and the supporting information therein.

  24. B. A. Van Vlierberge, H. B. Abrahamson, Laser flash photolysis of bis[tricarbonyl(cyclopentadienyl)tungsten] under visible irradiation J. Photochem. Photobiol., A, 1990, 52, 69–81.

    Article  Google Scholar 

  25. S. L. Scott, J. H. Espenson, Z. Zhu, Reactivity of 17-electron organometallic tungsten and molybdenum radicals: a laser flash photolysis study J. Am. Chem. Soc., 1993, 115, 1789–1797.

    Article  CAS  Google Scholar 

  26. Q. Yao, A. Bakac, J. H. Espenson, Dissociation and recombination dynamics of the complexes [(η5-C5η5)Cr(CO)3]2 (R = hydrogen, methyl) Organometallics, 1993, 12, 2010–2012.

    Article  CAS  Google Scholar 

  27. J. R. Knorr, T. L. Brown, Flash photolysis of molybdenum complex [(η5-C5H5)Mo(CO)3]2: mechanism of the formation and decay of the linear semibridged species ( η5-C5H52Mo2(CO)4(µ-η12-CO) J. Am. Chem. Soc., 1993, 115, 4087–4092.

    Article  CAS  Google Scholar 

  28. J. Peters, M. W. George, J. J. Turner, Photochemistry of [CpMo(CO)3]2. Direct detection and kinetics of the radical CpMo(CO)3 in n-heptane solution at room temperature by fast time-resolved infrared spectroscopy Organometallics, 1995, 14, 1503–1506.

    Article  CAS  Google Scholar 

  29. J. C. Linehan, C. R. Yonker, R. S. Addleman, S. T. Autrey, J. T. Bays, T. E. Bitterwolf, J. L. Daschbach, Solvent study of the kinetics of molybdenum radical self-termination Organometallics, 2001, 20, 401–407.

    Article  CAS  Google Scholar 

  30. J. L. Male, M. Yoon, A. G. Glenn, T. J. R. Weakley, D. R. Tyler, Radical cage effects in the photochemical degradation of polymers: In-cage trapping of photochemically generated radical cage pairs in polymer model compounds Macromolecules, 1999, 32, 3898–3906.

    Article  CAS  Google Scholar 

  31. N. K. Szymczak, A. B. Oelkers, D. R. Tyler, Detection of hydrogen bonding in solution: A 2H nuclear magnetic resonance method based on rotational motion of a donor/acceptor complex Phys. Chem. Chem. Phys., 2006, 8, 4002–4008.

    Article  CAS  Google Scholar 

  32. A. Tsutsumi, B. Perly, A. Forchioni, C. Chachaty, A magnetic resonance study of the segmental motion and local conformations of poly(l-glutamic acid) in aqueous solutions Macromolecules, 1978, 11, 977–986.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. David.

Additional information

Electronic supplementary information (ESI) available: Additional kinetics data and vibrational relaxation time constants (s2) relevant to Table 1. See DOI: 10.1039/b709005f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oelkers, A.B., Schutte, E.J. & David, D.R. Solvent cage effects: the influence of radical mass and volume on the recombination dynamics of radical cage pairs generated by photolysis of [CpCH2CH2N(CH3)C(O)(CH2)nCH3Mo(CO)3]2 (n = 3, 8, 13, 18) (Cp = η5-C5H4) complexes. Photochem Photobiol Sci 7, 228–234 (2008). https://doi.org/10.1039/b709005f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b709005f

Navigation