Issue 15, 2007

Synthesis and evaluation of 2-(2-fluoro-4-hydroxymethyl-5-methoxy-phenoxy)acetic acid as a linker in solid-phase synthesis monitored by gel-phase 19F NMR spectroscopy

Abstract

Gel-phase 19F NMR spectroscopy is a useful monitoring technique for solid-phase organic chemistry due to the high information content it delivers and swift acquisition times, using standard NMR spectrometers. This paper describes the synthesis of the novel linker 2-(2-fluoro-4-hydroxymethyl-5-methoxy-phenoxy)acetic acid in 29% yield over seven steps, using nucleophilic aromatic substitutions on 2,4,5-trifluorobenzonitrile as key steps. Following standard solid-phase synthesis a peptide could be cleaved from the linker using 20% TFA in CH2Cl2 in 30 minutes, in contrast to a previously described monoalkoxy linker that requires 90% TFA in water at elevated temperature. A resin-bound peptide could be successfully glycosylated using only two equivalents of a thioglycoside donor, activated with N-iodosuccinimide and trifluoromethanesulfonic acid, and subsequent cleavage and deprotection gave the target glycopeptide. Direct glycosylation of the linker itself followed by mild acidic cleavage gave a fully protected hemiacetal for further chemical manipulation.

Graphical abstract: Synthesis and evaluation of 2-(2-fluoro-4-hydroxymethyl-5-methoxy-phenoxy)acetic acid as a linker in solid-phase synthesis monitored by gel-phase 19F NMR spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2007
Accepted
12 Jun 2007
First published
28 Jun 2007

Org. Biomol. Chem., 2007,5, 2464-2471

Synthesis and evaluation of 2-(2-fluoro-4-hydroxymethyl-5-methoxy-phenoxy)acetic acid as a linker in solid-phase synthesis monitored by gel-phase 19F NMR spectroscopy

F. K. Wallner, S. Spjut, D. Boström and M. Elofsson, Org. Biomol. Chem., 2007, 5, 2464 DOI: 10.1039/B704472K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements