Skip to main content
Log in

Photoinduced oxygen uptake for 9,10-anthraquinone in air-saturated aqueous acetonitrile in the presence of formate, alcohols, ascorbic acid or amines

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photolysis of 9,10-anthraquinone (AQ), 2-methyl- and 2,3-dimethyl-AQ was studied in air-saturated acetonitrile-water in the presence of various donors: formate, ascorbic acid, alcohols, e.g. 2-propanol or methanol, and amines, e.g. ethylenediaminetetraacetate (EDTA). The photoreaction is initiated by H-atom or electron transfer from the donor to the AQ triplet state. The conversion of oxygen into hydrogen peroxide occurs via the superoxide radical and its conjugate acid. The quantum yield of oxygen uptake (\({\Phi _{ - {O_2}}}\)) increases with increasing donor concentration. \({\Phi _{ - {O_2}}}\) = 0.3–0.6 in the presence of 1 M 2-propanol and 3–10 mM ascorbic acid or EDTA. The properties of the quinone and donor radicals involved and the pH and concentration dependences of \({\Phi _{ - {O_2}}}\) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Bruce, Photochemistry of quinones, in The Chemistry of the Quinoid Compounds, ed. S. Patei, Wiley, New York, 1974, pp. 465–538.

    Google Scholar 

  2. K. Maruyama and A. Osuka, Recent advances in the photochemistry of quinones, in The Chemistry of the Quinoid Compounds, ed. S. Patei and Z. Rappoport, Wiley, New York, 1988, vol. 2, pp. 737–878 and ref. cited therein.

    Google Scholar 

  3. D. Schulte-Frohlinde, C. von Sonntag Zur Photoreduktion von Chinonen in Lösung Z. Phys. Chem., Neue Folge 1965 44 314–327.

    Article  CAS  Google Scholar 

  4. J. F. McKellar Phototendering of the antraquinone VAT dyes. A review Radiat. Res. Rev. 1971 3 141–165.

    CAS  Google Scholar 

  5. M. Goez Flash CIDNP investigation of a cyclic photoreaction Chem. Phys. 1987 147 143–154.

    Article  Google Scholar 

  6. K. Gollnik, S. Held, D. O. Mártire, S. E. Braslavsky Hydroxyanthraquinones as sensitizers of singlet oxygen reactions: quantum yields of triplet formation and singlet oxygen generation in acetonitrile J. Photochem. Photobiol., A 1992 69 155–165.

    Article  Google Scholar 

  7. T. Kausche, J. Säuberlich, E. Trobitzsch, D. Beckert, K. P. Dinse Photoreduction of 9,10-anthraquinone by triethylamine: a Fourier-transform EPR study Chem. Phys. 1996 208 375–390.

    Article  CAS  Google Scholar 

  8. I. Gutiérrez, S. G. Bertolotti, M. A. Biasutti, A. T. Soltermann, A. A. García Quinones and hydroxyquinones as generators and quenchers of singlet molecular oxygen Can. J. Chem. 1997 75 423–428.

    Article  Google Scholar 

  9. M. G. Kulkarni, S. D. Kate Chemistry of l-ascorbic acid. Part 3. Photoreduction of quinones with 5,6-O-isopropylidene-l-ascorbic acid J. Chem. Soc., Perkin Trans. 1 2000 4242–4244.

    Google Scholar 

  10. H. Görner Photoreduction of 9,10-anthraquinone derivatives: transient spectroscopy and effects of alcohols and amines on reactivity in solution Photochem. Photobiol. 2003 77 171–179.

    Article  PubMed  Google Scholar 

  11. A. D. Broadbent, H. B. Matheson, R. P. Newton Photolysis of aqueous solutions of 9,10-anthraquinone-2-sulfonate. Part II. Dependence of rates of hydroxylation on reaction conditions Can. J. Chem. 1975 53 826–829.

    Article  CAS  Google Scholar 

  12. A. Wakisaka, T. W. Ebbesen, H. Sakuragi, K. Tokumaru Effect of water concentration on photoreduction of anthraquinone-2-sulfonate by 2-propanol in aqueous acetonitrile solution J. Phys. Chem. 1987 91 6547–6551.

    Article  CAS  Google Scholar 

  13. I. Loeff, S. Goldstein, A. Treinin, H. Linschitz Reactions of formate ion with triplets of anthraquinone-2-sulfonate, 1,4-naphthoquinone, benzophenone-4-carboxylate, and benzophenone-4-sulfonate J. Phys. Chem. 1991 95 4423–4430.

    Article  CAS  Google Scholar 

  14. A. E. Alegria, A. Ferrer, G. Santiago, E. Sepúlveda, W. Flores Photochemistry of water-soluble quinones. Production of the hydroxyl radical, singlet oxygen and the superoxide ion J. Photochem. Photobiol., A 1999 127 57–65.

    Article  CAS  Google Scholar 

  15. H. Görner Photoprocesses of p-benzoquinones in aqueous solution J. Phys. Chem. A 2003 107 11587–11595.

    Article  CAS  Google Scholar 

  16. J. von Sonntag, E. Mvula, K. Hildenbrand, C. von Sonntag Photohydroxylation of 1,4-benzoquinone in aqueous solution revisited Chem.–Eur. J. 2004 10 440–451.

    Article  CAS  Google Scholar 

  17. H. Görner Photoreactions of p-benzo-, p-naphtho- and p-anthraquinones with ascorbic acid Photochem. Photobiol. Sci. 2004 3 933–938.

    Article  PubMed  Google Scholar 

  18. M. Goez, V. Zubarev Two-photon ionization of 1,5-anthraquinonedisulfonate via photoinduced electron transfer J. Phys. Chem. A 1999 103 9605–9613.

    Article  CAS  Google Scholar 

  19. H. Görner Photoreactions of 1,4-naphthoquinones: effects of substituents and water on the intermediates and reactivity Photochem. Photobiol. 2005 81 376–383.

    Article  PubMed  Google Scholar 

  20. A. Chowdhury, S. Basu Interactions between 9,10-anthraquinone and aromatic amines in homogeneous and micellar media: a laser flash photolysis and magnetic field effect study J. Lumin. 2006 121 113–122.

    Article  CAS  Google Scholar 

  21. B. E. Hulme, E. J. Land, G. O. Phillips Pulse radiolysis of 9,10-anthraquinones, part 1. Radicals J. Chem. Soc., Faraday Trans. 1972 68 1992–2002.

    Article  CAS  Google Scholar 

  22. K. B. Patel, R. L. Willson Semiquinone free radicals and oxygen. Pulse radiolysis study of one electron transfer equilibria J. Chem. Soc., Faraday Trans. 1 1973 69 814–825.

    Article  Google Scholar 

  23. P. S. Rao, E. Hayon Ionization constants and spectral characteristics of some semiquinone radicals in aqueous solution J. Phys. Chem. 1973 77 2274–2276.

    Article  CAS  Google Scholar 

  24. V. A. Roginsky, L. M. Pisarenko, W. Bors, C. Michel, M. Saran Comparative pulse radiolysis studies of alkyl- and methoxy-substituted semiquinones formed from quinones and hydroquinones J. Chem. Soc., Faraday Trans. 1998 94 1835–1840.

    Article  CAS  Google Scholar 

  25. S. Steenken and P. Neta, Transient phenoxyl radicals: formation and properties in aqueous solutions in The Chemistry of Phenols, ed. Z. Rappoport, Wiley, New York, 2003, pp. 1107–1152.

    Chapter  Google Scholar 

  26. P. Wardman Reduction potentials of one-electron couples involving free radicals in aqueous solution J. Chem. Phys. Ref. Data 1989 18 1637–1755.

    Article  CAS  Google Scholar 

  27. D. C. Neckers, O. M. Valdes-Aguilera Photochemistry of the xanthene dyes Adv. Photochem. 1993 18 315–394.

    CAS  Google Scholar 

  28. R. W. Redmond, J. N. Gamlin A compilation of singlet oxygen yields from biologically relevant molecules Photochem. Photobiol. 1999 70 391–475.

    Article  CAS  PubMed  Google Scholar 

  29. P. Bilski, A. G. Motten, M. Bilska, C. F. Chignell The photooxidation of diethylhydroxylamine by Rose Bengal in micellar and nonmicellar aqueous solutions Photochem. Photobiol. 1993 58 11–18.

    Article  CAS  PubMed  Google Scholar 

  30. C. R. Lambert, I. E. Kochevar Does Rose Bengal triplet generate superoxide anion J. Am. Chem. Soc. 1996 118 3297–3298.

    Article  CAS  Google Scholar 

  31. C. M. Krishna, S. Uppuluri, P. Riesz, J. S. Zigler, B. Balasubramanian A study of the photodynamic efficiencies of some eye lens constituents Photochem. Photobiol. 1991 54 51–58.

    Article  CAS  PubMed  Google Scholar 

  32. H. Kim, L. J. Kirschenbaum, I. Rosenthal, P. Riesz Photosensitized formation of ascorbate radicals by riboflavin: an ESR study Photochem. Photobiol. 1993 57 777–784.

    Article  CAS  PubMed  Google Scholar 

  33. A. K. Davies, K. R. Howard, J. F. McKellar, G. O. Phillips Primary processes in the methylene blue photosensitized oxidation of l-ascorbic acid J. Photochem. 1972/73 1 423–425.

    Article  Google Scholar 

  34. D. Behar, G. Czapski, J. Rabani, L. M. Dorfman, H. A. Schwarz The acid dissociation constant and decay kinetics of the perhydroxy radical J. Phys. Chem. 1970 74 3209–3213.

    Article  CAS  Google Scholar 

  35. B. H. J. Bielski, H. W. Richter A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption J. Am. Chem. Soc. 1977 99 3019–3023.

    Article  CAS  Google Scholar 

  36. B. H. J. Bielski Reevaluation of the spectral and kinetic properties of HO2 and O2- free radicals Photochem. Photobiol. 1978 28 645–649.

    Article  CAS  Google Scholar 

  37. B. H. J. Bielski, A. O. Allen, H. A. Schwarz Mechanism of disproportionation of ascorbate radicals J. Am. Chem. Soc. 1981 103 3516–3518.

    Article  CAS  Google Scholar 

  38. C. von Sonntag, in The Chemical Basis of Radiation Biology, Taylor and Francis, London, 1987.

    Google Scholar 

  39. C. von Sonntag, in Free-Radical-Induced DNA Damage and its Repair, a Chemical Perspective, Springer, Berlin, 2006.

    Book  Google Scholar 

  40. D. E. Cabelli, B. H. J. Bielski Kinetics and mechanism of the oxidation of ascorbic acid/ascorbate by HO2/O2- radicals. A pulse radiolysis and stopped-flow photolysis study J. Phys. Chem. 1983 87 1809–1812.

    Article  CAS  Google Scholar 

  41. N. S. Isaacs, R. van Eldik A mechanistic study of the reduction of quinones by ascorbic acid J. Chem. Soc., Perkin Trans. 2 1997 1465–1467.

    Google Scholar 

  42. V. A. Roginsky, T. K. Barsukova, H. Stegmann Kinetics of redox interaction between substituted quinones and ascorbate under aerobic conditions Chem.-Biol. Interact. 1999 121 177–197.

    Article  CAS  PubMed  Google Scholar 

  43. V. A. Roginsky, T. Barsukova Kinetics of oxidation of hydroquinones by molecular oxygen. Effect of superoxide dismutase J. Chem. Soc., Perkin Trans. 2 2000 1575–1582.

    Google Scholar 

  44. R. F. Bartholomew, R. S. Davidson The photosensitised oxidation of amines. Part I. The, use of benzophenone as sensitizer J. Chem. Soc. C 1971 23412-2346.

    Google Scholar 

  45. H. Görner Oxygen uptake and involvement of superoxide radicals upon photolysis of ketones in air-saturated aqueous alcohol, formate, amine or ascorbate solution Photochem. Photobiol. 2006 82 801–808.

    Article  PubMed  CAS  Google Scholar 

  46. G. J. Fisher and H. E. Johns, Pyridine photohydrates, in Photochemistry and Photobiology of Nucleic Acids, ed. S. Y. Wang, Academic Press, New York, 1976, pp. 169–224.

    Chapter  Google Scholar 

  47. H. G. Heller, J. R. Langan Photochromic heterocyclic fulgides. Part 3. The use of (E)-a-(2,5-dimethyl-3-furylethylidene)(isopropylidene)succinic anhydride as a simple convenient chemical actinometer J. Chem. Soc., Perkin Trans. 2 1981 341–343.

    Google Scholar 

  48. P. Neta, R. E. Huie, A. B. Ross Rate constants for reactions of peroxyl radicals in fluid solutions J. Phys. Chem. Ref. Data 1990 19 413–461.

    Article  CAS  Google Scholar 

  49. P. Neta, R. E. Huie, S. Mosseri, L. V. Shastri, J. P. Mittal, P. Maruthamuthu, S. Steenken Rate constants for reduction of substituted methylperoxyl radicals by ascorbic ions and N,N,N’,N’,-tetramethyl-p-phenylenediamine J. Phys. Chem. 1989 93 4099–4104.

    Article  CAS  Google Scholar 

  50. S. Das, C. von Sonntag The oxidation of trimethylamine by OH radicals in aqueous solution, as studied by pulse radiolysis, ESR, and product analysis. The reactions of the alkylamine radical cation, the aminoalkyl radical, and the protonated aminoalkyl radical Z. Naturforsch., B 1986 41b 505–513.

    Article  CAS  Google Scholar 

  51. S. Das, M. N. Schuchmann, H.-P. Schuchmann, C. von Sonntag The production of the superoxide radical anion by the OH radical-induced oxidation of trimethylamine in oxygenated aqueous solution. The kinetics of the hydrolysis of (hydroxymethyl)dimethylamine Chem. Ber. 1987 120 319–323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Kurt Schaffner on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Görner, H. Photoinduced oxygen uptake for 9,10-anthraquinone in air-saturated aqueous acetonitrile in the presence of formate, alcohols, ascorbic acid or amines. Photochem Photobiol Sci 5, 1052–1058 (2006). https://doi.org/10.1039/b606968a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b606968a

Navigation