Skip to main content
Log in

Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photodynamic effect of novel cationic porphyrins, with different pattern of meso-substitution by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl (A) and 4-(trifluoromethyl)phenyl (B) groups, have been studied in both solution bearing photooxidizable substrates and in vitro on a typical Gram-negative bacterium Escherichia coli. In these sensitizers, the cationic groups are separated from the macrocycle ring by a propoxy spacer. Thus, the charges have a high mobility and a minimal influence on photophysical properties of the porphyrin. These compounds produce singlet molecular oxygen, O2(1Δg), with quantum yields of ~0.41-0.53 in N,N-dimethylformamide. In methanol, the l-tryptophan photodecomposition increases with the number of cationic charges in the sensitizer. In vitro investigations show that cationic porphyrins are rapidly bound to E. coli cells in ~5 min. A higher binding was found for A3B3+ porphyrin, which is tightly bound to cells still after three washing steps. Photosensitized inactivation of E. coli cellular suspensions follows the order: A3B3+ > A44+ ≫ ABAB2+ > AB3+. Under these conditions, a negligible effect was found for 5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (TPPS44−) that characterizes an anionic sensitizer. Also, the results obtained for these new cationic porphyrins were compared with those of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin (TTAP4+), which is a standard active sensitizer established to eradicate E. coli. The photodynamic activity of TTAP4+ is quite similar to that produced by A44+. Studies in an anoxic condition indicate that oxygen is necessary for the mechanism of action of photodynamic inactivation of bacteria. The higher photodynamic activity of A3B3+ was confirmed by growth delay experiments. Photodynamic inactivation capacities of these sensitizers were also evaluated in E. coli cells immobilized on agar surfaces. Under these conditions, A3B3+ porphyrin retains a high activity to inactivate localized bacterial cells. Therefore, tricationic porphyrin A3B3+ is an interesting sensitizer with potential applications in photodynamic inactivation of bacteria in liquid suspensions or on surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Taylor, P. D. Stapleton and J. P. Luzio, New ways to treat bacterial infections, Drug Discovery Today, 2002, 7, 1086–1091.

    Article  PubMed  Google Scholar 

  2. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  3. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Ochsner, Photophysical and photobiological processes in photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  5. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233-234, 351–371.

    Article  CAS  Google Scholar 

  6. M. Merchat, G. Bertoloni, P. Giacomini, A. Villanueva and G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of Gram-positive and Gram-negative bacteria, J. Photochem. Photobiol., B, 1996, 32, 153–157.

    Article  CAS  Google Scholar 

  7. M. Merchat, G. Spikes, G. Bertoloni and J. Jori, Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins, J. Photochem. Photobiol., B, 1996, 35, 149–157.

    Article  CAS  Google Scholar 

  8. Y. Nitzan, A. Balzam-Sudakevitz and H. Ashkenazi, Eradication of Acinetobacter baumanni by photosensitized agents in vitro, J. Photochem. Photobiol., B, 1998, 42, 211–218.

    Article  CAS  Google Scholar 

  9. Y. Nitzan and H. Ashkenazi, Photoinactivation of Acinetobacter baumannii and Escherichia coli B by cationic hydrophilic porphyrin at various light wavelengths, Curr. Microbiol., 2001, 42, 408–414.

    Article  CAS  PubMed  Google Scholar 

  10. E. Reddi, M. Ceccon, G. Valduga, G. Jori, J. C. Bommer, F. Elisei, L. Latterini and U. Mazzucato, Photophysical properties and antibacterial activity of meso-substituted cationic porphyrin, Photochem. Photobiol., 2002, 75, 462–470.

    Article  CAS  PubMed  Google Scholar 

  11. D. Lazzeri, M. Rovera, L. Pascual and E. N. Durantini, Photodynamic studies and photoinactivation of Escherichia coli using meso-substituted cationic derivatives with asymmetric charge distribution, Photochem. Photobiol., 2004, 80, 286–293.

    Article  CAS  PubMed  Google Scholar 

  12. M. Salmon-Divon, Y. Nitzan and Z. Malik, Mechanistic aspect of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine, Photochem. Photobiol. Sci., 2004, 3, 423–429.

    Article  CAS  PubMed  Google Scholar 

  13. E. A. Dupouy, D. Lazzeri and E. N. Durantini, Photodynamic activity of cationic and non-charged Zn(ii) tetrapyridinoporphyrazine derivatives: biological consequences in human erythrocytes and Escherichia coli, Photochem. Photobiol. Sci., 2004, 3, 992–998.

    Article  CAS  PubMed  Google Scholar 

  14. D. A. Caminos and E. N. Durantini, Synthesis of asymmetrically meso-substituted porphyrins bearing amino groups as potential cationic photodynamic agents, J. Porphyrin Phthalocyanine, 2005, 9, 334–342.

    Article  CAS  Google Scholar 

  15. A. Ando and I. Kumadaki, Progress on the syntheses of fluorine analogs of natural porphyrins potentially useful for the diagnosis and therapy of certain cancers, J. Fluor. Chem., 1999, 100, 135–146.

    Article  CAS  Google Scholar 

  16. J. C. P. Grancho, M. M. Pereira, M. da G. Miguel, A. M. Rocha Gosnsalves and H. D. Burrows, Synthesis, spectra and photophysics of some free base tetrafluoroalkyl and tetrafluoroaryl porphyrins with potential applications in imaging, Photochem. Photobiol., 2002, 75, 249–256.

    Article  CAS  PubMed  Google Scholar 

  17. M. E. Milanesio, M. S. Moran, E. I. Yslas, M. G. Alvarez, V. Rivarola and E. N. Durantini, Synthesis and biological evaluation of methoxyphenyl porphyrin derivatives as potential photodynamic agents, Bioorg. Med. Chem., 2001, 9, 1943–1949.

    Article  CAS  PubMed  Google Scholar 

  18. R. W. Redmond and J. N. Gamlin, A compilation of singlet yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  19. R. Schmidt and E. Afshari, Effect of solvents on the phosphorescence rate constant of singlet molecular oxygen (1Δg, J. Phys. Chem., 1990, 94, 4377–4378.

    Article  CAS  Google Scholar 

  20. J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams, in Bergey’s manual of determinative bacteriology, ed. W. R. Hensyl, Williams and Wilkins, Baltimore, MD, ninth edition, 1994.

  21. M. Kreitner, K.-H. Wagner, G. Alth, R. Ebermann, H. Foiβy and I. Elmadfa, Haematoporphyrin- and sodium chlorophyllin-induced phototoxicity towards bacteria and yeasts-a new approach for safe foods, Food Control, 2001, 12, 529–533.

    Article  CAS  Google Scholar 

  22. K. M. Smith, in Porphyrins and Metalloporphyrins, General features of the structure and chemistry of porphyrin compounds, Elsevier, Amsterdam, 1975, ch. 1, pp. 20–27.

    Google Scholar 

  23. K. Kano, K. Fukuda, H. Wakami, R. Nishiyabu and R. F. Pasternack, Factor influencing self-aggregation tendencies of cationic porphyrins in aqueous solutions, J. Am. Chem. Soc., 2000, 122, 7494–7502.

    Article  CAS  Google Scholar 

  24. D. L. Akins, H.-R. Zhu and C. Guo, Aggregation of tetraaryl-substituted porphyrins in homogeneous solution, J. Phys. Chem., 1996, 100, 5420–5425.

    Article  CAS  Google Scholar 

  25. G. Csík, E. Balog, I. Voszka, F. Tölgyesi, D. Oulmi, Ph. Maillard and M. Momenteau, Glycosylated derivatives of tetraphenyl porphyrin: photophysical characterization, self-aggregation and membrane binding, J. Photochem. Photobiol., B, 1998, 44, 216–224.

    Article  Google Scholar 

  26. K. Kano, K. Fukuda, H. Wakame, R. Nishiyabu and R. F. Pasternack, Factor influencing self-aggregation tendencies of cationic porphyrins in aqueous solutions, J. Am. Chem. Soc., 2000, 122, 7494–7502.

    Article  CAS  Google Scholar 

  27. M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. d’A. Rocha Gonsalves, L. G. Arnaut and S. J. Formosinho, Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies, Chem.-Eur. J., 1998, 4, 2299–2307.

    Article  CAS  Google Scholar 

  28. M. E. Milanesio, M. G. Alvarez, J. J. Silber, V. Rivarola and E. N. Durantini, Photodynamic activity of monocationic and non-charged methoxyphenylporphyrin derivatives in homogeneous and biological media, Photochem. Photobiol. Sci., 2003, 2, 926–933.

    CAS  PubMed  Google Scholar 

  29. M. E. Milanesio, M. G. Alvarez, E. I. Yslas, C. D. Borsarelli, J. J. Silber, V. Rivarola and E. N. Durantini, Photodynamic studies of metallo 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin: photochemical characterization and biological consequences in a human carcinoma cell line, Photochem. Photobiol., 2001, 74, 14–21.

    Article  CAS  PubMed  Google Scholar 

  30. B. M. Aveline and R. W. Redmond, Can cellular phototoxicity be accurately predicted on the basic of sensitizer photophysics?, Photochem. Photobiol., 1999, 69, 306–316.

    Article  CAS  PubMed  Google Scholar 

  31. A. Segalla, C. Milanesi, G. Jori, H.-G. Capraro, U. Isele and K. Schieweck, CGP 55398, a liposomal Ge(IV) phthalocyanine bearing two axially ligated cholesterol moieties: a new potential agent for photodynamic therapy of tumours, Br. J. Cancer, 1994, 69, 817–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H. Ali, J. E. van Lier, Metal complexes as photo- and radiosensitizers, Chem. Rev., 1999, 99, 2379–2450.

    Article  CAS  PubMed  Google Scholar 

  33. G. Ferraudi, G. A. Argüello, H. Ali and J. E. van Lier, Types I and II sensitized photooxidation of aminoacid by phthalocyanines: a flash photochemical study, Photochem. Photobiol., 1988, 47, 657–660.

    Article  CAS  PubMed  Google Scholar 

  34. M. E. Daraio, A. Völker, P. A. Aramendía and E. San Román, Tryptophan quenching of zinc-phthalocyanine and porphycene fluorescence in micellar CTAC, Photochem. Photobiol., 1998, 67, 371–377.

    Article  CAS  Google Scholar 

  35. J. M. Wessels, C. S. Foote, W. E. Ford and M. A. J. Rodgers, Photooxidation of tryptophan: O21Δg) versus electron-transfer pathway, Photochem. Photobiol., 1997, 65, 96–102.

    Article  CAS  PubMed  Google Scholar 

  36. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanines to photoinactivate both Gram-negative and Gram-positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  37. L. Benov, I. Batinić-Haberle, I. Spasojević and I. Fridovich, Isomeric N-alkylpyridylporphyrins and their Zn(ii) complexes: inactive as SOD mimics but powerful photosensitizers, Arch. Biochem. Biophys., 2002, 402, 159–165.

    Article  CAS  PubMed  Google Scholar 

  38. B. M. Aveline, R. M. Sattler and R. W. Redmond, Environmental effects on cellular photosensitization: correlation of phototoxicity mechanism with transient absorption spectroscopy measurements, Photochem. Photobiol., 1998, 68, 51–62.

    Article  CAS  PubMed  Google Scholar 

  39. A. Orenstein, D. Klein, J. Kopolovic, E. Winkler, Z. Malik, N. Keller and Y. Nitzan, The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections, FEMS Immunol. Med. Microbiol., 1998, 19, 307–314.

    Article  Google Scholar 

  40. S. Wood, B. Nattress, J. Kirkham, R. Shore, S. Brookes, J. Griffiths and C. Robinson, An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo, J. Photochem. Photobiol., B, 1999, 50, 1–7.

    Article  CAS  Google Scholar 

  41. P. Kubát, K. Lang, P. Anzenbacher, Jr., K. Jursíková, V. Král and B. Ehrenberg, Interaction of novel cationic meso-tetraphenylporphyrins in the ground and excited states with DNA and nucleotides, J. Chem. Soc., Perkin Trans. 1, 2000, 933–941.

    Google Scholar 

  42. H. Li, O. S. Fedorova, A. N. Grachev, W. R. Trumble, G. A. Bohach and L. Czuchajowski, A series of meso-tris(N-methyl-pyridiniumyl)-(4-alkylamidophenyl) porphyrins: synthesis, interaction with DNA and antibacterial activity, Biochim. Biophys. Acta, 1997, 1354, 252–260.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo N. Durantini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caminos, D.A., Spesia, M.B. & Durantini, E.N. Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. Photochem Photobiol Sci 5, 56–65 (2006). https://doi.org/10.1039/b513511g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b513511g

Navigation