Skip to main content

Advertisement

Log in

Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fluorescence photobleaching and photoproduct formation were investigated during δ-aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) PDT of MLL cells in vitro. Cells were incubated in either 0.1 or 1.0 mM ALA for 4 h and were treated with 532 nm or 635 nm light under well oxygenated or hypoxic conditions. Fluorescence spectra were acquired during treatment. Photobleaching and photoproduct formation were quantified using singular value decomposition fitting of fluorescence spectra to experimentally determined basis spectra for PpIX, photoprotoporphyrin (Ppp), product II (peak at 655 nm), and product III (peak at 618 nm). PpIX photobleaching occurred under both normal and hypoxic conditions. The photobleaching kinetics could not be explained by purely first- or second-order photobleaching kinetics, and were attributed to differences in PpIX binding at the two ALA incubation concentrations. Ppp was the main photoproduct and accumulated in higher levels in the absence of oxygen, likely a result of reduced Ppp photobleaching under hypoxia. Increases in product II fluorescence occurred mainly in the presence of oxygen. To assess potential fluorescence based PDT dose metrics, cell viability was measured at select times during treatment using a colony formation assay. Cell survival correlated well to changes in product II fluorescence, independent of oxygenation, sensitizer concentration, and treatment wavelength, suggesting that this product is primarily a result of singlet oxygen mediated reactions and may potentially be useful to quantify singlet oxygen dose during PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fukuda, A. Casas and A. Batlle, Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy, Int. J. Biochem. Cell Biol., 2005, 37, 272–276.

    Article  CAS  Google Scholar 

  2. B. Krammer and K. Uberriegler, In-vitro investigation of ALA-induced protoporphyrin IX, J. Photochem. Photobiol., B, 1996, 36, 121–126.

    Article  CAS  Google Scholar 

  3. J. C. Kennedy, R. H. Pottier and D. C. Pross, Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience, J. Photochem. Photobiol., B, 1990, 6, 143–148.

    Article  CAS  Google Scholar 

  4. L. Wyld, M. W. Reed and N. J. Brown, The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro, Br. J. Cancer, 1998, 77, 1621–1627.

    Article  CAS  Google Scholar 

  5. P. Uehlinger, M. Zellweger, G. Wagnieres, L. Juillerat-Jeanneret, H. van den Bergh and N. Lange, 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells, J. Photochem. Photobiol., B, 2000, 54, 72–80.

    Article  CAS  Google Scholar 

  6. I. Georgakoudi, P. C. Keng and T. H. Foster, Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells, Br. J. Cancer, 1999, 79, 1372–7.

    Article  CAS  Google Scholar 

  7. A. Juzeniene, P. Juzenas, O. Kaalhus, V. Iani and J. Moan, Temperature effect on accumulation of protoporphyrin IX after topical application of 5-aminolevulinic acid and its methylester and hexylester derivatives in normal mouse skin, Photochem. Photobiol., 2002, 76, 452–456.

    Article  CAS  Google Scholar 

  8. W. Dietel, K. Bolsen, E. Dickson, C. Fritsch, R. Pottier and R. Wendenburg, Formation of water-soluble porphyrins and protoporphyrin IX in 5-aminolevulinic-acid-incubated carcinoma cells, J. Photochem. Photobiol., B, 1996, 33, 225–231.

    Article  CAS  Google Scholar 

  9. L. Wyld, J. L. Burn, M. W. Reed and N. J. Brown, Factors affecting aminolaevulinic acid-induced generation of protoporphyrin IX, Br. J. Cancer, 1997, 76, 705–712.

    Article  CAS  Google Scholar 

  10. I. A. Boere, D. J. Robinson, H. S. de Bruijn, J. van den Boogert, H. W. Tilanus, H. J. Sterenborg and R. W. de Bruin, Monitoring in situ dosimetry and protoporphyrin IX fluorescence photobleaching in the normal rat esophagus during 5-aminolevulinic acid photodynamic therapy, Photochem. Photobiol., 2003, 78, 271–277.

    Article  CAS  Google Scholar 

  11. M. J. Niedre, A. J. Secord, M. S. Patterson and B. C. Wilson, In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy, Cancer Res., 2003, 63, 7986–7994.

    CAS  PubMed  Google Scholar 

  12. J. S. Dysart, G. Singh and M. S. Patterson, Calculation of Singlet Oxygen Dose from Photosensitizer Fluorescence and Photobleaching During mTHPC Photodynamic Therapy of MLL Cells, Photochem. Photobiol., 2005, 81, 196–205.

    Article  CAS  Google Scholar 

  13. J. S. Dysart and M. S. Patterson, Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro, Phys. Med. Biol., 2005, 50, 2597–2616.

    Article  CAS  Google Scholar 

  14. J. S. Dysart, M. S. Patterson, T. J. Farrell and G. Singh, Relationship between mTHPC fluorescence photobleaching and cell viability during in vitro photodynamic treatment of DP16 cells, Photochem. Photobiol., 2002, 75, 289–295.

    Article  CAS  Google Scholar 

  15. L. Brancaleon and H. Moseley, Effects of photoproducts on the binding properties of protoporphyrin IX to proteins, Biophys. Chem., 2002, 96, 77–87.

    Article  CAS  Google Scholar 

  16. J. Moan, G. Streckyte, S. Bagdonas, O. Bech and K. Berg, Photobleaching of protoporphyrin IX in cells incubated with 5-aminolevulinic acid, Int. J. Cancer, 1997, 70, 90–97.

    Article  CAS  Google Scholar 

  17. L. Brancaleon, S. W. Magennis, I. D. Samuel, E. Namdas, A. Lesar and H. Moseley, Characterization of the photoproducts of protoporphyrin IX bound to human serum albumin and immunoglobulin G, Biophys. Chem., 2004, 109, 351–360.

    Article  CAS  Google Scholar 

  18. A. Datta, A. Dube, B. Jain, A. Tiwari, P. K. Gupta, The effect of pH and surfactant on the aggregation behavior of chlorin p6: a fluorescence spectroscopic study, Photochem. Photobiol., 2002, 75, 488–494.

    Article  CAS  Google Scholar 

  19. L. Bezdetnaya, N. Zeghari, I. Belitchenko, M. Barberi-Heyob, J. L. Merlin, A. Potapenko and F. Guillemin, Spectroscopic and biological testing of photobleaching of porphyrins in solutions, Photochem. Photobiol., 1996, 64, 382–386.

    Article  CAS  Google Scholar 

  20. C. D. Sudworth, M. R. Stringer, J. E. Cruse-Sawyer and S. B. Brown, Fluorescence microspectroscopy technique for the study of intracellular protoporphyrin IX dynamics, Appl. Spectrosc., 2003, 57, 682–688.

    Article  CAS  Google Scholar 

  21. W. S. Strauss, R. Sailer, M. H. Gschwend, H. Emmert, R. Steiner and H. Schneckenburger, Selective examination of plasma membrane-associated photosensitizers using total internal reflection fluorescence spectroscopy: correlation between photobleaching and photodynamic efficacy of protoporphyrin IX, Photochem. Photobiol., 1998, 67, 363–369.

    Article  CAS  Google Scholar 

  22. S. Bagdonas, L. W. Ma, V. Iani, R. Rotomskis, P. Juzenas and J. Moan, Phototransformations of 5-aminolevulinic acid-induced protoporphyrin IX in vitro: a spectroscopic study, Photochem. Photobiol., 2000, 72, 186–192.

    Article  CAS  Google Scholar 

  23. R. Sorensen, V. Iani and J. Moan, Kinetics of photobleaching of protoporphyrin IX in the skin of nude mice exposed to different fluence rates of red light, Photochem. Photobiol., 1998, 68, 835–840.

    Article  CAS  Google Scholar 

  24. P. Juzenas, S. Sharfaei, J. Moan and R. Bissonnette, Protoporphyrin IX fluorescence kinetics in UV-induced tumours and normal skin of hairless mice after topical application of 5-aminolevulinic acid methyl ester, J. Photochem. Photobiol., B, 2002, 67, 11–17.

    Article  CAS  Google Scholar 

  25. M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larko, J. Moan and A. Rosen, A spectroscopic study of the photobleaching of protoporphyrin IX in solution, Lasers Med. Sci., 2004, 18, 56–62.

    Article  Google Scholar 

  26. K. Konig, H. Schneckenburger, A. Ruck and R. Konig, Studies on porphyrin photoproducts in solution, cells, and tumor tissue, Proc. SPIE-Int. Soc. Opt. Eng., 1994, 2133, 226–237.

    Google Scholar 

  27. W. Dietel, C. Fritsch, R. H. Pottier and R. Wendenburg, 5-Aminolaevulinic-acid-induced formation of different porphyrins and their photomodifications, Lasers Med. Sci., 1997, 12, 266–236.

    Article  Google Scholar 

  28. J. C. Finlay, D. L. Conover, E. L. Hull and T. H. Foster, Porphyrin bleaching and PDT-induced spectral changes are irradiance dependent in ALA-sensitized normal rat skin in vivo, Photochem. Photobiol., 2001, 73, 54–63.

    Article  CAS  Google Scholar 

  29. D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown and W. M. Star, Protoporphyrin IX fluorescence photobleaching during ALA-mediated photodynamic therapy of UVB-induced tumors in hairless mouse skin, Photochem. Photobiol., 1999, 69, 61–70.

    Article  CAS  Google Scholar 

  30. G. S. Cox, C. Bobillier and D. G. Whitten, Photooxidation and singlet oxygen sensitization by protoporphyrin IX and its photooxidation products, Photochem. Photobiol., 1982, 36, 401–407.

    Article  CAS  Google Scholar 

  31. D. E. Gudgin and R. H. Pottier, On the role of protoporphyrin IX photoproducts in photodynamic therapy, J. Photochem. Photobiol., B, 1995, 29, 91–93.

    Article  Google Scholar 

  32. L. Ma, S. Bagdonas and J. Moan, The photosensitizing effect of the photoproduct of protoporphyrin IX, J. Photochem. Photobiol., B, 2001, 60, 108–113.

    Article  CAS  Google Scholar 

  33. T. Theodossiou and A. J. MacRobert, Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratinocytes, Photochem. Photobiol., 2002, 76, 530–537.

    Article  CAS  Google Scholar 

  34. P. Juzenas, V. Iani, S. Bagdonas, R. Rotomskis and J. Moan, Fluorescence spectroscopy of normal mouse skin exposed to 5-aminolaevulinic acid and red light, J. Photochem. Photobiol., B, 2001, 61, 78–86.

    Article  CAS  Google Scholar 

  35. S. L. Gibson, J. J. Havens, M. L. Nguyen and R. Hilf, Delta-aminolaevulinic acid-induced photodynamic therapy inhibits protoporphyrin IX biosynthesis and reduces subsequent treatment efficacy in vitro, Br. J. Cancer, 1999, 80, 998–1004.

    Article  CAS  Google Scholar 

  36. D. Kessel, Relocalization of cationic porphyrins during photodynamic therapy, Photochem. Photobiol. Sci., 2002, 1, 837–840.

    Article  CAS  Google Scholar 

  37. H. Zeng, M. Korbelik, D. I. McLean, C. MacAulay and H. Lui, Monitoring photoproduct formation and photobleaching by fluorescence spectroscopy has the potential to improve PDT dosimetry with a verteporfin-like photosensitizer, Photochem. Photobiol., 2002, 75, 398–405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Patterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dysart, J.S., Patterson, M.S. Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions. Photochem Photobiol Sci 5, 73–81 (2006). https://doi.org/10.1039/b511807g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b511807g

Navigation