Skip to main content
Log in

Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The Tb(iii) complex of the iron-transport protein transferrin (Tb2-Tfr) exhibits strongly sensitised, sharp line luminescence from f-f states following multiphoton excitation via two tyrosinate residues directly co-ordinated to the lanthanide ion. Using an ultrafast Ti:sapphire laser system, a quadratic dependence of the Tb(iii) luminescence intensity was observed on excitation with photons at 503 and 566 nm, and a cubic dependence with photons at 800 nm. The two-photon cross-sections at 503 and 566 nm are 7.4 × 10−50 and 0.37 × 10−50 cm4 s photon−1 mol−1, respectively, which compare favourably with values reported for the green fluorescent protein. Three-photon excitation at 800 nm gives rise to a Tb(iii) emission spectrum with excellent signal to noise ratios. These results lead to a proposal that if a Tb(iii)-protein complex with similar luminescent properties could be formed in vivo, an intra-cellular imaging system that uses multiphoton-excited, long-lived lanthanide ion luminescence could be developed. This offers the prospect of multiphoton imaging in tight focal planes using sharp line emission with long lifetimes for wavelength and time discrimination against background fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. König, Multiphoton microscopy in life sciences, J. Microsc., 2000, 200, 83–104.

    Article  PubMed  Google Scholar 

  2. D. L. Andrews, Lasers in Chemistry, Springer, Berlin, 3rd edn., 1997.

    Book  Google Scholar 

  3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 2nd edn., 1999.

    Book  Google Scholar 

  4. R. M. Williams, W. R. Zipfel and W. W. Webb, Multiphoton microscopy in biological research, Curr. Opin. Chem. Biol., 2001, 5, 603.

    Article  CAS  PubMed  Google Scholar 

  5. D. J. S. Birch, Multiphoton excited fluorescence spectroscopy of biomolecular systems, Spectrochim. Acta, Part A, 2001, 57, 2313.

    Article  CAS  Google Scholar 

  6. R. Y. Tsien and A. Miyawaki, Seeing the machinery of living cells, Science, 1998, 280, 1954–1958.

    Article  CAS  PubMed  Google Scholar 

  7. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams and W. W. Webb, Multiphoton fluorescence excitation: new spectral windows for biological non-linear microscopy, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 10-763–10-768.

    Article  CAS  Google Scholar 

  8. C. G. Dos Remedios and P. D. J. Moens, Resonance energy transfer in proteins, in Resonance Energy Transfer, ed. D. L. Andrews and A. A. Demidov, Wiley, New York, 1999, pp. 1–64.

    Google Scholar 

  9. P. Allcock and D. L. Andrews, Two photon fluorescence: resonance energy transfer, J. Chem. Phys., 1998, 108, 3089.

    Article  CAS  Google Scholar 

  10. P. Allcock and D. L. Andrews, Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, ed. E. M. Sevick-Muraca, J. A. Izatt and M. N. Ediger, Trends in Optics and Photonics Vol. 22, Optical Society of America, Washington DC, 1998.

  11. B. P. Kreuger, J. Yom, P. J. Walla and G. R. Fleming, Observation of the S-1 state of spheroidene in LH2 by two photon excitation, Chem. Phys. Lett., 1999, 310, 57.

    Article  Google Scholar 

  12. P. J. Walla, J. Yom, B. P. Krueger and G. R. Fleming, Two photon excitation spectrum of light harvesting complex II and fluorescence upconversion after one and two photon excitation, J. Phys. Chem. B, 2000, 104, 4799.

    Article  CAS  Google Scholar 

  13. G. Piszczek, B. P. Maliwal, I. Gryczynski, J. Dattelbaum and J. R. Lakowicz, Multiphoton ligand-enhanced excitation of lanthanides, J. Fluor., 2001, 11, 101.

    Article  CAS  Google Scholar 

  14. H. Mizuno, A. Sawano, P. Eli, H. Hama and A. Miyawaki, Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer, Biochemistry, 2001, 40, 2502.

    Article  CAS  PubMed  Google Scholar 

  15. M. G. Xu, B. Crimeen, M. J. Ludford-Menting, X. S. Gan, S. M. Russell and M. Gu, Three dimensional localisation of fluorescence resonance energy transfer in living cells under two photon excitation, Scanning, 2001, 23, 9.

    Article  CAS  PubMed  Google Scholar 

  16. P. R. Selvin, Lanthanide based resonance energy transfer, IEEE J. Sel. Top. Quantum Electron., 1996, 2, 1077–1087.

    Article  CAS  Google Scholar 

  17. G. S. Sittampalam, S. D. Kahl and W. P. Janzen, High throughput screening: advances in assay technologies, Curr. Opin. Chem. Biol., 1997, 1, 384–391.

    Article  CAS  PubMed  Google Scholar 

  18. P. R. Selvin, Principles and biophysical applications of lanthanide based probes, Annu. Rev. Biophys. Biomol. Struct., 2002, 31, 275–302.

    Article  CAS  PubMed  Google Scholar 

  19. W. DeW. Horrocks Jr. and M. Albin, Lanthanide ion luminescence in co-ordination chemistry, Prog. Inorg. Chem., 1984, 31, 1–104.

    CAS  Google Scholar 

  20. W. DeW. Horrocks Jr., Luminescence spectroscopy for metalloproteins, Methods Enzymol., 1993, 226, 495–533.

    Article  CAS  PubMed  Google Scholar 

  21. M. Elbanowski and B. Makowska, The lanthanides as luminescent probes of biochemical systems, J. Photochem. Photobiol., 1996, 99, 85–92.

    Article  CAS  Google Scholar 

  22. H. Takalo, V. Mukkala and L. Merio, Luminescent Tb(III) chelates for protein labelling, effect of triplet state level, Helv. Chim. Acta, 1997, 117, 372–387.

    Article  Google Scholar 

  23. M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis and J. Kankare, Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield, J. Lumin., 1997, 75, 149–169.

    Article  CAS  Google Scholar 

  24. H. Sun, H. Li and P. J. Sadler, Transferrin as a metal ion mediator, Chem. Rev., 1999, 99, 2817–2842.

    Article  CAS  PubMed  Google Scholar 

  25. R. T. A. MacGillivray, S. A. Moore, J. Chen, B. F. Anderson, H. Baker, A. B. Mason, R. C. Woodworth, G. D. Brayer and E. N. Baker, Crystal structures of recombinant N-lobe human transferrin, Biochemistry, 1998, 37, 7919–7928.

    Article  CAS  PubMed  Google Scholar 

  26. W. R. Harris, Binding constants for Nd(III) and Sm(III) with transferrin, Inorg. Chem., 1986, 25, 2041–2045.

    Article  CAS  Google Scholar 

  27. O. Zak and P. Aisen, Studies on binding of Gd(III) to transferrin, Biochemistry, 1988, 27, 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  28. W. R. Harris, B. Yang, S. Abdollahi and Y. Hamada, Steric restrictions on binding of large metal ions to transferrin, J. Inorg. Biochem., 1999, 76, 231.

    Article  CAS  PubMed  Google Scholar 

  29. W. R. Harris, Equilibrium constants for complexation of metal ions by serum transferrin, Adv. Exp. Med. Biol., 1989, 249, 67–93.

    Article  CAS  PubMed  Google Scholar 

  30. C. Luk, Study of metal binding sites in transferrin using lanthanide ions as fluorescent probes, Biochemistry, 1971, 10, 2838–2843.

    Article  CAS  Google Scholar 

  31. G. F. White, Lanthanide Ion Binding Proteins as In Vivo Luminescent Labels, PhD Thesis, University of East Anglia, Norwich, UK, 2002.

    Google Scholar 

  32. G. F. White, I. Harvey and A. J. Thomson, unpublished results.

  33. G. Stein, E. Würzberg, Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions, J. Chem. Phys., 1975, 62, 208–213.

    Article  CAS  Google Scholar 

  34. S. Sueda, J. Yuan and K. Matsumoto, A homogeneous DNA hybridisation system by using a new luminescence terbium chelate, Bioconjugate Chem., 2002, 13, 200.

    Article  CAS  Google Scholar 

  35. M. A. Albota, C. Xu and W. W. Webb, Two photon fluorescence excitation cross sections of biomolecular probes from 690 to 960nm, Appl. Opt., 1998, 37, 7352.

    Article  CAS  PubMed  Google Scholar 

  36. G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms and T. Schmidt, Two photon excitation action cross-sections of autofluorescent proteins, Chem. Phys. Lett., 2001, 350, 71.

    Article  CAS  Google Scholar 

  37. B. E. Anderson, R. D. Jones, A. A. Rehms, P. Ilich and P. R. Callis, Polarised two photon fluorescence excitation spectra of indole and benzimidazole, Chem. Phys. Lett., 1986, 125, 106.

    Article  CAS  Google Scholar 

  38. Y. P. Meshalkin, Two photon absorption cross sections of aromatic amino acids and proteins, Kvantovaya Elektron., 1996, 23, 551–552.

    CAS  Google Scholar 

  39. J. J. Falke, E. E. Snyder, K. C. Thatcher and C. S. Voertler, Engineering the ion specificity of an EF-hand like Ca(II) binding site, Biochemistry, 1991, 30, 8690–8697.

    Article  CAS  PubMed  Google Scholar 

  40. S. K. Drake, K. L. Lee and J. K. Falke, Tuning the equilibrium ion affinity and selectivity of EF-hand Ca(II) binding, Biochemistry, 1996, 35, 6697–6705.

    Article  CAS  PubMed  Google Scholar 

  41. J. P. MacManus, C. W. Hogue, B. J. Marsden, M. Sikorska and A. G. Szabo, Tb(III) luminescence in synthetic peptide loops from Ca(II) binding proteins, J. Biol. Chem., 1990, 265, 10-358–10-366.

    Article  CAS  Google Scholar 

  42. I. D. Clark, J. P. MacManus, D. Banville and A. G. Szabo, Sensitised lanthanide luminescence in an engineered Ca-binding protein, Anal. Biochem., 1993, 210, 1–6.

    Article  CAS  PubMed  Google Scholar 

  43. M. Siedlecka, G. Goch, A. Ejchart, H. Sticht and A. Bierznski, α-helix nucleation by a calcium binding loop, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 903–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. E. Snyder, B. Buoscio and J. J. Falke, Effect of size and charge on metal binding to an EF-hand like site, Biochemistry, 1990, 29, 3937–3943.

    Article  CAS  PubMed  Google Scholar 

  45. W. J. Meath and E. A. Power, On the importance of permanent moments in multiphoton absorption using perturbation theory, J. Phys. B: At. Mol. Phys., 1984, 17, 763–781.

    Article  CAS  Google Scholar 

  46. R. Francini, U. M. Grassano, M. Tomini, S. Boiko, G. G. Tarasov and A. Scacco, Two-photon excitation spectra of divalent europium in cubic perovskite KMgF3, Phys. Rev. B, 1997, 55, 7579–7584.

    Article  CAS  Google Scholar 

  47. M. C. Downer, C. D. Cordero-Montalvo and H. Crosswhite, Study of new 4f7 levels of Eu(II) in CaF2 and SrF2 using two photon absorption spectroscopy, Phys. Rev. B, 1983, 28, 4931–4943.

    Article  CAS  Google Scholar 

  48. M. C. Downer and A. Bivas, Third and fourth order analysis of the intensities and polarisation dependence of two photon absorption lines of Gd(III) in LaF3 and aqueous solution, Phys. Rev. B, 1983, 28, 3677–3695.

    Article  CAS  Google Scholar 

  49. T. M. Jovin, D. J. Arndt-Jovin, Luminescence digital imaging microscopy, Annu. Rev. Biophys. Biochem., 1989, 18, 271–308.

    Article  CAS  Google Scholar 

  50. G. Vereb, E. James-Erijman, P. R. Selvin and T. M. Jovin, Temporally and spectrally resolved imaging microscopy of lanthanide chelates, Biophys. J., 1998, 74, 2210–2222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. P. D. Higdon, P. Torok and T. Wilson, Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes, J. Microsc., 1999, 193, 127–141.

    Article  Google Scholar 

  52. R. M. Williams, J. B. Shear, W. R. Zipfel, S Maiti, W. W. Webb, Biophys. J., 1999, 76, 1835–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. C. H. Evans, Biochemistry of the Elements, Vol. 8: Biochemistry of the Lanthanides, series ed. E. Frieden, Plenum Press, New York, 1990.

  54. Y. Cheng, Q. Huo, J. Lu, R. Li and K. Wang, The transport kinetics of lanthanide species in a single erythrocyte probed by confocal laser scanning microscopy, J. Biol. Inorg. Chem., 1999, 4, 447–456.

    Article  CAS  PubMed  Google Scholar 

  55. Y. Cheng, H. Yao, H. Lin, J Lu, R Li and K. Wang, The events relating to lanthanide ions enhanced permeability of human erythrocyte membrane: binding, conformational change, phase transition, perforation and ion transport, Chemico-Biol. Interact., 1999, 121, 267–289.

    Article  CAS  Google Scholar 

  56. A. J. Nowalk, S. B. Tencza and T. A. Mietzner, Co-ordination of Fe(III) by Fbp of pathogenic Neisseria, Biochemistry, 1994, 33, 12-769–12-775.

    Article  CAS  Google Scholar 

  57. X. Du, T. Zhang, L. Yuan, Y. Zhao, R. Li, K. Wang, S. C. Yan, L. Zhang, H. Sun and Z. Qian, Complexation of ytterbium to human transferrin and its uptake by K562 cells, Eur. J. Biochem., 2002, 269, 6082–6090.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, G.F., Litvinenko, K.L., Meech, S.R. et al. Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin. Photochem Photobiol Sci 3, 47–55 (2004). https://doi.org/10.1039/b306760b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b306760b

Navigation