Skip to main content
Log in

Modified mesoporous MCM-41 as hosts for photochromic spirobenzopyrans

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The influence of the chemical composition and silylation of mesoporous MCM-41 materials on the photochromic behaviour of adsorbed spiropyran (BIPS) and 6-nitrospiropyran was studied. Upon incorporation, the spiropyrans underwent ring opening to form either zwitterionic merocyanine or its corresponding O-protonated form. In all silica MCM-41 or in the MCM-41 containing aluminium, the O-protonated merocyanine was predominantly formed. In the case of MCM-41 modified by silylation of the OH groups, a mixture of zwitterionic merocyanine and spiropyran was present. The photochromic response was studied by means of steady-state irradiation and by laser flash photolysis. Steady-state irradiation (λ > 450 nm) of the solid samples gives rise in all cases to an intensity decrease of the absorption bands corresponding to either the protonated or the unprotonated merocyanine form (reverse photochromism). In contrast, laser flash photolysis at 308 nm of spiropyrans supported on silylated MCM-41 allows observation of the photochemical ring opening of residual spiropyran to the corresponding zwitterionic form (normal photochromism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Bertelson and G. H. Brown, in Photochromism, Wiley, New York, 1971.

    Google Scholar 

  2. E. Hadjoudis, Photochromism. Molecules and Systems. In Studies in Organic Chemistry, eds. H. Dürr and L. Bouas, Elsevier, Amsterdam, 1990, p. 685.

  3. C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  4. E. Berman, R. E. Fox and F. D. Thomson, Photochromic spiropyrans. I. The effect of substituents on the rate of ring closure, J. Am. Chem. Soc., 1959, 81, 5605–5608.

    Article  CAS  Google Scholar 

  5. I. Shimizu, H. Kokado and E. Inoue, Photoreversible photographic systems. VI. Reverse photochromism of 1,3,3-trimethylspiro[indoline-2,2′-benzopyran]-8′-carboxylic acid, Bull. Chem. Soc. Jpn., 1969, 42, 1730–1734.

    Article  CAS  Google Scholar 

  6. I. Shimizu, H. Kokado and E. Inoue, Photoreversible photographic systems. V. Reverse photochromism of (photospiran/acid) system in acetone, Bull. Chem. Soc. Jpn., 1969, 42, 1726–1729.

    Article  CAS  Google Scholar 

  7. F. Raymo and M. S. Giordani, Signal processing at the molecular level, J. Am. Chem. Soc., 2001, 123, 4651–4652.

    Article  CAS  Google Scholar 

  8. C. Lenoble and R. S. Becker, Photophysics, photochemistry, kinetics, and mechanism of the photochromism of 6′-nitroindolinospiropyran, J. Phys. Chem., 1986, 90, 62–65.

    Article  CAS  Google Scholar 

  9. N. P. Ernsting and T. Arthen-Engeland, Photochemical ring-opening reaction of indolinespiropyrans studied by subpicosecond transient absorption, J. Phys. Chem., 1991, 95, 5502–5509.

    Article  CAS  Google Scholar 

  10. S. Aramaki and G. H. Atkinson, Spironaphthopyran photochromism: picosecond time-resolved spectroscopy, J. Am. Chem. Soc., 1992, 114, 438–444.

    Article  CAS  Google Scholar 

  11. N. Tamai and H. Masuhara, Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction, Chem. Phys. Lett., 1992, 191, 189–194.

    Article  CAS  Google Scholar 

  12. V. S. Marevtsev and N. L. Zaichenko, Peculiarities of photochromic behavior of spiropyrans and spirooxazines, J. Photochem. Photobiol., A, 1997, 104, 197–202.

    Article  CAS  Google Scholar 

  13. T. Suzuki, F.-T. Lin, S. Priyadashy and S. G. Weber, Stabilization of the merocyanine form of photochromic compounds in fluoro alcohols is due to a hydrogen bond, Chem. Commun., 1998, 2685–2686.

    Google Scholar 

  14. S. Aramaki and G. H. Atkinson, Spirooxazine photochromism: picosecond time-resolved Raman and absorption spectroscopy, Chem. Phys. Lett., 1990, 170, 181–186.

    Article  CAS  Google Scholar 

  15. G. Wirnsberger, B. J. Scott, B. F. Chmelka and G. D. Stucky, Fast response photochromic mesostructures, Adv. Mater. (Weinheim, Ger.), 2000, 12, 1450–1454.

    Article  CAS  Google Scholar 

  16. A. Tork, F. Boudreault, M. Roberge, A. M. Ritcey, R. A. Lessard and T. V. Galstian, Photochromic behavior of spiropyran in polymer matrices, Appl. Opt., 2001, 40, 1180–1186.

    Article  CAS  Google Scholar 

  17. R. Matsushima, M. Nishiyama and M. Doi, Improvements in the fatigue resistances of photochromic compounds, J. Photochem. Photobiol., A, 2001, 139, 63–69.

    Article  CAS  Google Scholar 

  18. I. Casades, S. Constantine, D. Cardin, H. Garcia, A. Gilbert and F. Marquez, ‘Ship-in-a-Bottle’ Synthesis and Photochromism of Spiropyrans Encapsulated within Zeolite Y Supercages, Tetrahedron, 2000, 56, 6951–6956.

    Article  CAS  Google Scholar 

  19. M. Alonso, V. Reboto, L. Guiscardo, A. S. Martin and J. C. Rodriguez-Cabello, Spiropyran Derivative of an Elastin-like Bioelastic Polymer: Photoresponsive Molecular Machine to Convert Sunlight into Mechanical Work, Macromolecules, 2000, 33, 9480–9482.

    Article  CAS  Google Scholar 

  20. H. Tagaya, T. Nagaoka, T. Kuwahara, M. Karasu, J.-I. Kadokawa and K. Chiba, Preparation and photochromism of sulfonated spiropyran-silica nanocomposites, Microporous Mesoporous Mater., 1998, 21, 395–402.

    Article  CAS  Google Scholar 

  21. G. Baillet, G. Giusti and R. Guglielmetti, Study of the fatigue process and the yellowing of polymeric films containing spirooxazine photochromic compounds, Bull. Chem. Soc. Jpn., 1995, 68, 1220–1225.

    Article  CAS  Google Scholar 

  22. V. Weiss and V. Z. Krongauz, Photokinetics in photochromic polymers studied by holographic recording, J. Phys. Chem., 1994, 98, 7562–7565.

    Article  CAS  Google Scholar 

  23. D. Preston, J. C. Pouxviel, T. Novinson, W. C. Kaska, B. Dunn and J. I. Zink, Photochromism of spiropyrans in aluminosilicate gels, J. Phys. Chem., 1990, 94, 4167–4172.

    Article  CAS  Google Scholar 

  24. A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev., 1997, 97, 2373–2419.

    Article  CAS  Google Scholar 

  25. M. Hartmann and L. Kevan, Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves: Location, Interaction with Adsorbates and Catalytic Properties, Chem. Rev., 1999, 99, 635–663.

    Article  CAS  Google Scholar 

  26. V. Ramamurthy, Photochemistry in Organized and Constrained Media, VCH, New York, 1991.

    Google Scholar 

  27. V. Ramamurthy, D. F. Eaton and J. V. Caspar, Photochemical and photophysical studies of organic molecules included within zeolites, Acc. Chem. Res., 1992, 25, 299–307.

    Article  CAS  Google Scholar 

  28. R. G. Weiss, V. Ramamurthy and G. S. Hammond, Photochemistry in organized and confining media: a model, Acc. Chem. Res., 1993, 26, 530–536.

    Article  CAS  Google Scholar 

  29. N. J. Turro, Supramolecular organic and inorganic photochemistry: radical pair recombination in micelles, electron transfer on starburst dendrimers, and the use of DNA as a molecular wire, Pure Appl. Chem., 1995, 67, 199–208.

    Article  CAS  Google Scholar 

  30. J. C. Scaiano and H. García, Intrazeolite Photochemistry: Towards the Control of Molecular Photochemistry, Acc. Chem. Res., 1999, 32, 783–793.

    Article  CAS  Google Scholar 

  31. A. Corma, Preparation and catalytic properties of new mesoporous materials, Top. Catal., 1998, 4, 249–260.

    Article  CAS  Google Scholar 

  32. K. Maeda, Photochromism in organized media, Yuki Gosei Kagaku Kyokaishi, 1991, 49, 554–565.

    Article  CAS  Google Scholar 

  33. J. C. Scaiano, CRC Handbook of Organic Photochemistry, CRC Press, Boca Raton, 1989.

    Google Scholar 

  34. K. Yoda, T. Ohzeki, T. Yuzawa and H. Takahashi, Resonance Raman studies of the solvatochromism and acid–base equilibria of 1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline], Spectrochim. Acta, Part A, 1989, 45A, 855–862.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casades, I., Álvaro, M., García, H. et al. Modified mesoporous MCM-41 as hosts for photochromic spirobenzopyrans. Photochem Photobiol Sci 1, 219–223 (2002). https://doi.org/10.1039/b110936g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b110936g

Navigation