Skip to main content
Log in

Photoreception and photomovements of microorganisms

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Many freely motile microorganisms can perceive and transduce external photic stimuli to the motor apparatus, eventually moving, by means of various behavioural strategies, into environments in which the illumination conditions are the most favourable for their life. In different microorganisms, a wide range of chromophores operate as light detectors, each of them set in a special molecular pocket that, in its turn, can be linked to another component of the transduction chain. The diverse photosensors are organized in special (and in many cases dedicated) photoreceptor units or subcellular organelles. The main molecular mechanisms connecting the early event of photon absorption to the formation of the signalling state down to the dark steps of the transduction chain are discussed in a selected number of case examples. The possible importance of an intensive multidisciplinary approach to these problems in an evolutionary perspective is finally briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Esminger, High hopes for hypericin, The Spectrum, 2001, 14, 15.

    Google Scholar 

  2. Photomovements, eds. D.-P. Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam.

  3. F. Lenci, A. Sgarbossa and N. Angelini, Molecular basis of photoreception in photomotile microorganisms, in Biophysics of Photoreception, ed. C. Taddei-Ferretti, 1997, World Scientific Publishing, Singapore, p. 25.

    Google Scholar 

  4. R. R. Birge, Z. Chen, D. Govender, R. B. Gross, S. B. Hom, K. C. Izgi, J. A. Stuart, J. R. Stuart and B. W. Vought, Biomolecular photonics based on bacteriorhodopsin, in CRC Handbook of Organic Photochemistry and Photobiology, eds. W. A. Horspool and P.-S. Song, 1995, CRC Boca Raton, FL, p. 1568.

    Google Scholar 

  5. I. Willner, Photoswitchable biomaterials: en route to opto-bioelectronic systems, Acc. Chem. Res., 1997, 30, 347.

    Article  CAS  Google Scholar 

  6. O. Pieroni, A. Fissi, N. Angelini and F. Lenci, Photoresponsive polypeptides, Acc. Chem. Res., 2001, 34, 9.

    Article  CAS  PubMed  Google Scholar 

  7. F. Lenci, G. Checcucci, F. Ghetti, D. Gioffré and A. Sgarbossa, Sensory perception and transduction of UV-B radiation by the ciliate Blepharisma japonicum, Biochim. Biophys. Acta, 1997, 1336, 23.

    Article  CAS  PubMed  Google Scholar 

  8. S. Matsunaga, T. Hori, T. Takahashi, M. Kubota, M. Watanabe, K. Okamoto, K. Masuda and M. Sugai, Discovery of signalling effect of UV-B/C for step-down and step-up photophobic responses in the unicellular flagellate alga Euglena gracilis, Protoplasma, 1998, 201, 45.

    Article  Google Scholar 

  9. T. Takahashi, Computer-aided analysis of movement responses of microorganisms, in Image Analysis: Methods and Applications, ed. D.-P. Häder, 2001, CRC Boca Raton, FL, p. 423.

    Google Scholar 

  10. F. Ghetti and G. Checcucci, Action spectroscopy, in Light as Energy Source and Information Carrier in Plant Physiology, eds. R. C. Jennings, G. Zucchelli, F. Ghetti and G. Colombetti, Plenum Press, New York, 1996, p. 275.

    Chapter  Google Scholar 

  11. K. W. Foster, J. Saranak, N. Patel, G. Zarilli, M. Okabe, T. Kilne and K. Nakanishi, A rhodopsin is the functioning photoreceptor for phototaxis unicellular eukaryote Chlamydomonas, Nature, 1984, 311, 756.

    Article  CAS  PubMed  Google Scholar 

  12. L. Barsanti, V. Passarelli, P. L. Walne and P. Gualtieri, The photoreceptor protein of Euglena gracilis, FEBS Lett., 2000, 482, 247

    Article  CAS  PubMed  Google Scholar 

  13. P. Gualtieri, Rhodopsin-like proteins: light detection pigments in Leptolyngbya, Euglena, Ochromonas, Pelvetia, in Photomovements, eds. D.-P. Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam, p. 281. And references therein.

    Chapter  Google Scholar 

  14. M. Lebert, Phototaxis of Euglena gracilis–flavins and pterins, in Photomovements, eds. D.-P. Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam, p. 297.

    Chapter  Google Scholar 

  15. W. D. Hoff, P. Düx, K. Hård, B. Devreese, I. M. Nugteren-Roodzant, W. Crielaard, R. Boelens, R. Kaptein, J. Van Beeumen and K. J. Hellingwerf, Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry, Biochemistry, 1994, 33, 13959

    Article  CAS  PubMed  Google Scholar 

  16. M. Baca, G. E. O. Borgstahl, M. Boissinot, P. M. Burke, D. R. Williams, K. A. Slater and E. D. Getzoff, Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxy-cinnamyl chromophore and photocycle chemistry, Biochemistry, 1994, 33, 14369.

    Article  CAS  PubMed  Google Scholar 

  17. N. Tao, M. Orlando, J.-S. Hyon, M. Gross and P.-S. Song, A new photoreceptor molecule from Stentor coeruleus, J. Am. Chem. Soc., 1993, 115, 2526.

    Article  CAS  Google Scholar 

  18. G. Checcucci, R. K. Shoemaker, E. Bini, R. Cerny, N. Tao, J.-S. Hyon, D. Gioffré, F. Ghetti, F. Lenci and P.-S. Song, Chemical structure of blepharismin, the photosensor pigment for Blepharisma japonicum, J. Am. Chem. Soc., 1997, 119, 5762.

    Article  CAS  Google Scholar 

  19. M. Maeda, H. Naoki, T. Matsuoka, Y. Kato, H. Kotsuki, K. Utsumi and T. Tanaka, Blepharismin 1-5, novel photoreceptor from the unicellular organism Blepharisma japonicum, Tetrahedron Lett., 1997, 38, 7411.

    Article  CAS  Google Scholar 

  20. D. Spitzner, G. Höfle, I. Klein, S. Pohlan, D. Ammermann and L. Jaenicke, On the structure of oxyblepharismin and its formation from blepharismin, Tetrahedron Lett., 1998, 39, 4003.

    Article  CAS  Google Scholar 

  21. T. Matsuoka, S. Matsuoka, Y. Yamaoka, T. Kuriu, Y. Watanabe, M. Takayanagi, Y. Kato and K. Taneda, Action spectra for step-up photophobic response in Blepharisma, J. Protozool., 1992, 39, 498.

    Article  Google Scholar 

  22. G. Checcucci, G. Damato, F. Ghetti and F. Lenci, Action spectra of the photophobic response of the blue and red forms of Blepharisma japonicum, Photochem. Photobiol., 1993, 57, 686.

    Article  CAS  Google Scholar 

  23. K. J. Hellingwerf, Key issues in the photochemistry and signalling-state formation of photosensor proteins, J. Photochem. Photobiol. B: Biol., 2000, 54, 94

    Article  CAS  Google Scholar 

  24. R. M. Williams and S. E. Braslavsky, Triggering of photomovement–molecular basis, in Photomovements, eds. D.-P Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam, p. 15.

    Chapter  Google Scholar 

  25. J. L. Spudich, C. S. Yang, K. H. Jung and E. N. Spudich, Retinylidene proteins: structures and functions from archaea to humans, Annu. Rev. Cell Dev. Biol., 2001, 16, 365

    Article  Google Scholar 

  26. J. L. Spudich, Color-sensitive vision by halobacteria, in Photomovements, eds. D.-P Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam, p. 151. And references therein.

    Chapter  Google Scholar 

  27. G. E. O. Borgstahl, D. R. Williams and E. D. Getzoff, 1.4 Å structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore, Biochemistry, 1995, 34, 6278.

    Article  CAS  PubMed  Google Scholar 

  28. W. D. Hoff, I. H. M. Van Stokkum, H. J. Van Ramesdonk, M. E. Van Brederode, A. M. Brouwer, J. C. Fitch, T. E. Meyer, R. Van Grondelle and K. J. Hellingwerf, Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila, Biophys. J., 1994, 67, 1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R. Kort, H. Vonk, X. Xu, W. D. Hoff and K. J. Hellingwerf, Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein, FEBS Lett., 1996, 382, 73

    Article  CAS  PubMed  Google Scholar 

  30. L. Ujj, S. Devanathan, T. E. Meyer, M. A. Cusanovich, G. Tollin and G. H. Atkinson, New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy, Biophys. J., 1998, 75, 406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R. Brudler, R. Rammelsberg, T. T. Woo, E. D. Getzoff and K. Gerwert, Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy, Nature, 2001, 8, 265.

    CAS  Google Scholar 

  32. U. K. Genick, G. E. O. Borgstahl, K. Ng, Z. Ren, C. Pradervand, P. M. Burke, V. Srajer, T.-Y. Teng, W. Schildkamp, D. E. McRee, K. Moffat and E. D. Getzoff, Structure of a protein photocycle intermediate by millisecond time-resolved crystallography, Science, 1997, 275, 1471

    Article  CAS  PubMed  Google Scholar 

  33. W. Crielaard, R. Kort and K. J. Hellingwerf, Photoactive yellow protein, a photoreceptor from purple bacteria, in Photomovements, eds. D.-P. Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, Vol. 1, 2001, Elsevier, Amsterdam, p. 181

    Google Scholar 

  34. V. Molina and M. Merchan, On the absorbance changes in the photocycle of the photoactive yellow protein: a quantum-chemical analysis, Proc. Natl. Acad. Sci. USA, 2001, 98, 4299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. L. Pellequer, K. A. Wagersmith, S. A. Kay and E. D. Getzoff, Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily, Proc. Natl. Acad. Sci. USA, 1998, 95, 5884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. I.-H. Kim, J. S. Rhee, J. W. Huh, S. Florell, B. Faure, K. W. Lee, M. Kahsai, P.-S. Song, N. Tamai, T. Yamazaki and I. Yamazaki, Structure and function of the photoreceptor stentorins in Stentor coeruleus. I. Partial characterization of the photoreceptor organelle and stentorins, Biochim. Biophys. Acta, 1990, 1040, 43

    Article  CAS  PubMed  Google Scholar 

  37. P.-S. Song, I.-H. Kim, S. Florell, N. Tamai, T. Yamazaki and I. Yamazaki, Structure and function of the photoreceptor stentorins in Stentor coeruleus. II. Primary photoprocess and picosecond time-resolved fluorescence, Biochim. Biophys. Acta, 1990, 1040, 58.

    Article  CAS  PubMed  Google Scholar 

  38. D. Gioffré, F. Ghetti, F. Lenci, C. Paradiso, R. Dai and P.-S. Song, Isolation and characterization of the presumed photoreceptor protein of Blepharisma japonicum, Photochem. Photobiol., 1993, 58, 275.

    Article  Google Scholar 

  39. T. Matsuoka, Y. Murakami and Y. Kato, Isolation of blepharismin-binding 200 kDa protein responsible for behavior in Blepharisma, Photochem. Photobiol., 1993, 57, 1042

    Article  CAS  Google Scholar 

  40. T. Matsuoka, T. Tsuda, M. Ishida, Y. Kato, M. Takayanagi, T. Fujino and S. Mizuta, Presumed photoreceptor protein and ultrastructure of the photoreceptor organelle in the ciliated protozoan, Blepharisma, Photochem. Photobiol., 1994, 60, 598

    Article  CAS  Google Scholar 

  41. T. Matsuoka, M. Sato, M. Maeda, H. Naoki, T. Tanaka and H. Kotsuki, Localization of blepharismin photosensors and identification of a photoreceptor complex mediating the step-up photophobic response of the unicellular organism, Blepharisma, Photochem. Photobiol., 1997, 65, 915.

    Article  CAS  Google Scholar 

  42. A. Podestà, D. Gioffré, T. Grossi and G. Montagnoli, Immuno-logical and biochemical evidence that blepharismin is not a prosthetic group, Photochem. Photobiol., 2000, 71, 669.

    Article  PubMed  Google Scholar 

  43. G. Checcucci, Y. Takada and T. Matsuoka, Studies on the photoreceptor pigment-protein complex of the ciliate Blepharisma japonicum, Mem. Fac. Sci. Kochi Univ., Ser. D. (Biol.), 2001, 22, 39.

    Google Scholar 

  44. W. Nultsch and H. Schuchart, A model for phototactic reaction chain of the cyanobacterium Anabaena variabilis, Arch. Microbiol., 1985, 142, 180.

    Article  CAS  Google Scholar 

  45. G. Checcucci, F. Lenci, F. Ghetti and P.-S. Song, A videomicroscopic study of the effect of a singlet oxygen quencher on Blepharisma japonicum photobehavior, J. Photochem. Photobiol., B: Biol., 1991, 11, 49

    Article  CAS  Google Scholar 

  46. F. Ghetti, G. Checcucci and F. Lenci, Photosensitized reactions as primary molecular events in photomovements of microorganisms, J. Photochem. Photobiol., B: Biol., 1992, 15, 185.

    Article  CAS  Google Scholar 

  47. A. Kida, Y. Takada, H. Kotsuki, D. Tokumori, G. Checcucci and T. Matsuoka, Primary stages in photosignal transduction leading to step-up photophobic response in the unicellular eukaryote Blepharisma japonicum, Microbios, 2000, 106, 189.

    Google Scholar 

  48. P. S. Song, Protozoan and related photoreceptors: molecular aspects, Annu. Rev. Biophys. Bioeng., 1983, 12, 35.

    Article  CAS  PubMed  Google Scholar 

  49. H. Fabczak, S. Fabczak, P.-S. Song, G. Checcucci, F. Ghetti and F. Lenci, Photosensory transduction in ciliates. Role of intracellular pH and comparison between Stentor coeruleus and Blepharisma japonicum, J. Photochem. Photobiol., B: Biol., 1993, 21, 47.

    Article  CAS  Google Scholar 

  50. T. A. Wells, A. Losi, R. Dai, P. Scott, S.-M. Park, J. Golbeck and P.-S. Song, Electron transfer quenching and photoinduced EPR of hypericin and the ciliate photoreceptor stentorin, J. Phys. Chem., 1997, 101, 366.

    Article  CAS  Google Scholar 

  51. N. Angelini, A. Quaranta, G. Checcucci, P.-S. Song and F. Lenci, Electron transfer fluorescence quenching of Blepharisma japonicum photoreceptor pigment, Photochem. Photobiol., 1998, 68, 864.

    Article  CAS  Google Scholar 

  52. T. Matsuoka, Y. Murakami, T. Furukohri, M. Ishida and K. Taneda, Photoreceptor pigment in Blepharisma: H+ release from red pigment, Photochem. Photobiol., 1992, 56, 399.

    Article  CAS  Google Scholar 

  53. K. W. Foster and R. D. Smyth, Light antennas in phototactic algae, Microbiol. Rev., 1980, 44, 572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. G. Kreimer, Light perception and signal modulation during photoorientation of flagellate green algae, in Photomovements, eds. D.-P Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam, p. 193

    Chapter  Google Scholar 

  55. H.-W. Kuhlmann, Do phototactic ciliates make use of directional antennas to track the direction of light?, Eur. J. Protistol., 1998, 34, 244.

    Article  Google Scholar 

  56. T. Matsuoka, D. Tokumori, H. Kotsuki, M. Ishida, M. Matsushita, S. Kimura, T. Itoh and G. Checcucci, Analyses of structure of photoreceptor organelle and blepharismin-associated protein in unicellular eukaryote Blepharisma, Photochem. Photobiol., 2000, 72, 709.

    Article  CAS  PubMed  Google Scholar 

  57. S. M. Block, Biophysical principles of sensory transduction, in Sensory Transduction, The Rockfeller University Press, New York, 1992, p. 1.

    Google Scholar 

  58. E. C. Bovee and T. L. Jahn, A theory of piezoelectric activity and ion-movements in the relation of flagellar structures and their movements to the phototaxis of Euglena, J. Theor. Biol., 1972, 35, 259

    Article  CAS  PubMed  Google Scholar 

  59. P. L. Walne, V. Passarelli, L. Barsanti and P. Gualtieri, Rhodopsin: a photopigment for phototaxis in Euglena gracilis, Crit. Rev. Plant Sci., 1998, 17, 559.

    Article  CAS  Google Scholar 

  60. W. Deininger, M. Fuhrmann and P. Hegemann, Opsin evolution: out of wild green yonder?, Trends Genet., 2000, 16, 158

    Article  CAS  PubMed  Google Scholar 

  61. P. Hegemann and W. Deininger, Algal eyes and their rhodopsin photoreceptors, in Photomovements, eds. D.-P. Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam, p. 229.

    Chapter  Google Scholar 

  62. D. C. Wood, Electrophysiology and light responses in Stentor and Blepharisma, in Photomovements, eds. D.-P Häder and M. Lebert, Comprehensive Series in Photosciences, eds. D.-P. Häder and G. Jori, vol. 1, 2001, Elsevier, Amsterdam, p. 505 and references therein.

    Chapter  Google Scholar 

  63. H. Fabczak, Protozoa as model system for studies of sensory light transduction: photophobic response in the ciliate Stentor and Blepharisma, Acta Protozool., 2000, 39, 171.

    CAS  Google Scholar 

  64. M. Walerczyk and S. Fabczak, Additional evidence for the cyclic GMP signalling pathway resulting in the photophobic behavior of Stentor coeruleus, Photochem. Photobiol., 2001, 74, 829.

    Article  CAS  PubMed  Google Scholar 

  65. P. Koprowski, M. Walerczyk, B. Groszynska, H. Fabczak and A. Kubalski, Modified patch-clamp method for studying ion channels in Stentor coeruleus, Acta Protozool., 1997, 36, 121.

    Google Scholar 

  66. H. Fabczak, M. Walerczyk, B. Groszynska and S. Fabczak, Light induces inositol trisphosphate elevation in Blepharisma japonicum, Photochem. Photobiol., 1999, 69, 254

    CAS  PubMed  Google Scholar 

  67. T. Matsuoka, N. Moriyama, A. Kida, K. Okuda, T. Suzuki and H. Kotsuki, Immuno-chemical analysis of a photoreceptor protein using anti-IP3 receptor antibody in the unicellular organism, Blepharisma, J. Photochem. Photobiol., B: Biol., 2000, 54, 131.

    Article  CAS  Google Scholar 

  68. M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi, T. Hori and M. Watanabe, A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis, Nature, 2002, 415, 1047.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to our querida Professor Silvia Braslavsky on the occasion of her 60th birthday.

Note added in proof

Iseki et al.50 have recently discovered and biochemically characterized a new type of blue-light receptor flavoprotein, photo-activated adenylyl cyclase, which mediates the step-up photophobic response of Euglena gracilis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgarbossa, A., Checcucci, G. & Lenci, F. Photoreception and photomovements of microorganisms. Photochem Photobiol Sci 1, 459–467 (2002). https://doi.org/10.1039/b110629e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b110629e

Navigation