Issue 32, 2023

Nanoengineering TiO2 for evaluating performance in dye sensitized solar cells with natural dyes

Abstract

The current study employs nanoengineering diatom and TiO2 NPs to form diatom-Si–TiO2 nanoengineered structures to fabricate a dye sensitized solar cell (DSSC) (DsTnas-DSSC). This was characterized and spin coated on a Fluorine-doped Tin Oxide (FTO) anode plate. The counter cathode was prepared by spin coating graphene oxide on a FTO glass plate and using Lugol's iodine as an electrolyte. The power density of DsTnas-DSSC was estimated with different natural dyes in comparison to conventional photosensitive ruthenium dye. It was found that the natural dyes extracted from plants and microalgae show significant power efficiencies in DSSC. The percentage efficiency of maximum power densities (PDmax) of DsTnas-DSSC obtained with photosensitive dyes were 9.4% with synthetic ruthenium dye (control) and 7.19% > 4.08% > 0.72% > 0.58% > 0.061% from natural dyes found in Haematococcus pluvialis (astaxanthin) > Syzygium cumini (anthocyanin) > Rosa indica (anthocyanin) > Hibiscus rosa-sinensis (anthocyanin) > Beta vulgaris (betalains), respectively. Among all the natural dyes used, the PDmax for the control ruthenium dye was 6.164 mW m−2 followed by the highest in astaxanthin natural dye from Haematococcus pluvialis (5.872 mW m−2). Overall, the use of natural dye DsTnas-DSSC makes the fuel cell low cost and an alternative to conventional expensive, metal and synthetic dyes.

Graphical abstract: Nanoengineering TiO2 for evaluating performance in dye sensitized solar cells with natural dyes

Supplementary files

Article information

Article type
Paper
Submitted
03 May 2023
Accepted
17 Jul 2023
First published
26 Jul 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 22630-22638

Nanoengineering TiO2 for evaluating performance in dye sensitized solar cells with natural dyes

M. J. Khan, A. Ahirwar, V. Sirotiya, A. Rai, S. Varjani and V. Vinayak, RSC Adv., 2023, 13, 22630 DOI: 10.1039/D3RA02927A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements