Issue 43, 2020

A two-component charge transfer hydrogel with excellent sensitivity towards the microenvironment: a responsive platform for biogenic thiols

Abstract

A two-component charge transfer (CT) hydrogel has been derived from a supramolecular heteroassembly of a pyrene amino acid conjugate (PyHisOH, donor) with a 4-chloro-7-nitrobenzofurazan (NBD-Ox, acceptor) derivative in aqueous medium. The mechanical stiffness, as well as the thermal stability of the CT hydrogels largely depend on the relative ratios of donor and acceptor units as well as on their overall concentration. Moreover, the gel-to-sol transition is found to be susceptible to various external stimuli such as heat, pH, metal ions, etc. Circular dichroism and morphological investigation reveal the formation of left-handed helical fibers in the CT gel network. XRD studies show the lamellar packing of the interactive units in the 3D network of the CT hydrogel. The determination of different rheological parameters confirms the viscoelastic as well as the thixotropic nature of the CT gel. Furthermore, the CT gel is employed for turn-on sensing of biogenic thiols, cyan fluorescence was observed with cysteine/homocysteine, while blue fluorescence with glutathione. Nucleophilic attack at the NBD moiety leads to the formation of thermodynamically stable amino-linked derivatives for cysteine or homocysteine and kinetically controlled thiol-linked adduct for glutathione. Thus, the current system presents a unique opportunity, where a CT hydrogel sample is involved for discriminating biogenic thiols via specific chemodosimetric interactions.

Graphical abstract: A two-component charge transfer hydrogel with excellent sensitivity towards the microenvironment: a responsive platform for biogenic thiols

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2020
Accepted
20 Jul 2020
First published
29 Jul 2020

Soft Matter, 2020,16, 9882-9889

A two-component charge transfer hydrogel with excellent sensitivity towards the microenvironment: a responsive platform for biogenic thiols

D. Biswakarma, N. Dey and S. Bhattacharya, Soft Matter, 2020, 16, 9882 DOI: 10.1039/D0SM00502A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements