Skip to main content

Advertisement

Log in

Enhanced visible light photocatalysis by TiO2–BN enabled electrospinning of nanofibers for pharmaceutical degradation and wastewater treatment

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Boron nitride (BN) nanosheets are promising support materials for catalysts. A series of TiO2–BN enabled electrospun nanofibers were synthesized for the photocatalytic treatment of ibuprofen and secondary wastewater effluent under visible light. X-ray photoelectron spectroscopy confirmed the existence of B–O–Ti bonds between the BN nanosheets and TiO2 nanofibers, resulting in energy rearrangement, narrowed band gaps, and enhanced light utilization efficiency of the TiO2–BN nanocomposites in the visible light spectrum. Transient photocurrent measurements revealed that the BN enhanced the transport of photogenerated holes from the bulk TiO2 nanofibers to its surface, resulting in more efficient separation and less recombination of the charge carriers. A kinetic study of ibuprofen degradation indicated the enhanced photocatalytic performance of TiO2–BN catalysts with a higher BN content in the nanocomposites. The kinetic rate constant of the TiO2–10% BN catalysts was 10 times higher than that of the pure TiO2 nanofibers. The degradation of organic contaminants in wastewater followed the same trend as ibuprofen and improved with increasing BN content. The stability of the TiO2–BN nanocomposites as an effective solar photocatalyst was demonstrated by multiple cycles of wastewater treatment. The results proved that TiO2–BN is an appealing photocatalyst under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. National Academies of Sciences and Medicine, The Drug Development Paradigm in Oncology: Proceedings of a Workshop, National Academies Press, 2018.

  2. E. National Academies of Sciences and Medicine, A Review of the Environmental Protection Agencys Science to Achieve Results Research Program, The National Academies Press, Washington, DC, 2017.

    Google Scholar 

  3. N. R. Council, Water Reuse: Potential for Expanding the Nations Water Supply Through Reuse of Municipal Wastewater, The National Academies Press, Washington, DC, 2012.

    Google Scholar 

  4. R. Velagaleti and M. Gill, Regulatory oversight for the environmental assessment of human and animal health drugs: environmental assessment regulations for drugs, ACS Publications, 2001.

  5. N. F. Moreira, C. Narciso-da-Rocha, M. I. Polo-López, L. M. Pastrana-Martínez, J. L. Faria, C. M. Manaia, P. Fernández-Ibáñez, O. C. Nunes and A. M. Silva, Water Res., 2018, 135, 195–206.

    Article  CAS  PubMed  Google Scholar 

  6. X. Chen, L. Liu, Y. Y. Peter and S. S. Mao, Science, 2011, 1200448.

  7. C. R. Stephenson, T. P. Yoon and D. W. MacMillan, Visible Light Photocatalysis in Organic Chemistry, John Wiley & Sons, 2018.

  8. P. Kar, T. K. Maji, P. K. Sarkar, P. Lemmens and S. K. Pal, J. Mater. Chem. A, 2018, 6, 3674–3683.

    Article  CAS  Google Scholar 

  9. N. Singh, J. Prakash, M. Misra, A. Sharma and R. K. Gupta, ACS Appl. Mater. Interfaces, 2017, 9, 28495–28507.

    Article  CAS  PubMed  Google Scholar 

  10. M. Misra, N. Singh and R. K. Gupta, Catal. Sci. Technol., 2017, 7, 570–580.

    Article  CAS  Google Scholar 

  11. N. Singh, J. Prakash and R. K. Gupta, Mol. Syst. Des. Eng., 2017, 2, 422–439.

    Article  CAS  Google Scholar 

  12. A. Tyagi, K. M. Tripathi, N. Singh, S. Choudhary and R. K. Gupta, RSC Adv., 2016, 6, 72423–72432.

    Article  CAS  Google Scholar 

  13. N. Singh, K. Mondal, M. Misra, A. Sharma and R. K. Gupta, RSC Adv., 2016, 6, 48109–48119.

    Article  CAS  Google Scholar 

  14. M. Misra, R. K. Gupta, A. Paul and M. Singla, J. Power Sources, 2015, 294, 580–587.

    Article  CAS  Google Scholar 

  15. R. Saravanan, J. Aviles, F. Gracia, E. Mosquera and V. K. Gupta, Int. J. Biol. Macromol., 2018, 109, 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  16. W. Wang, M. O. Tadé and Z. Shao, Prog. Mater. Sci., 2018, 92, 33–63.

    Article  CAS  Google Scholar 

  17. C. Byrne, G. Subramanian and S. C. Pillai, J. Environ. Chem. Eng., 2018, 6, 3531–3555.

    Article  CAS  Google Scholar 

  18. K. Nakata and A. Fujishima, J. Photochem. Photobiol., C, 2012, 13, 169–189.

    Article  CAS  Google Scholar 

  19. Y. Liu, H. Wang, Y. Wang, H. Xu, M. Li and H. Shen, Chem. Commun., 2011, 47, 3790–3792.

    Article  CAS  Google Scholar 

  20. J. H. Bang and P. V. Kamat, Adv. Funct. Mater., 2010, 20, 1970–1976.

    Article  CAS  Google Scholar 

  21. R. Al-Attabi, Y. Morsi, J. A. Schütz and L. F. Dumée, Sci. Total Environ., 2019, 647, 725–733.

    Article  CAS  PubMed  Google Scholar 

  22. C. Ligon, K. Latimer, Z. D. Hood, S. Pitigala, K. D. Gilroy and K. Senevirathne, RSC Adv., 2018, 8, 32865–32876.

    Article  CAS  Google Scholar 

  23. A. Merenda, L. Kong, N. Fahim, A. Sadek, E. L. H. Mayes, A. Hawley, B. Zhu, S. R. Gray and L. F. Dumée, ACS Appl. Nano Mater., 2019, 2, 1951–1963.

    Article  CAS  Google Scholar 

  24. A. Merenda, A. Rana, A. Guirguis, D. M. Zhu, L. Kong and L. F. Dumée, J. Phys. Chem. C, 2019, 123, 2189–2201.

    Article  CAS  Google Scholar 

  25. M. Nasr, R. Viter, C. Eid, R. Habchi, P. Miele and M. Bechelany, New J. Chem., 2017, 41, 81–89.

    Article  CAS  Google Scholar 

  26. C. Eid, E. Assaf, R. Habchi, P. Miele and M. Bechelany, RSC Adv., 2015, 5, 97849–97854.

    Article  CAS  Google Scholar 

  27. L. Lin, H. Wang, H. Luo and P. Xu, J. Photochem. Photobiol., A, 2015, 307308, 88–98.

    Article  CAS  Google Scholar 

  28. M. Asiltürk, F. Sayılkan and E. Arpaç, J. Photochem. Photobiol., A, 2009, 203, 64–71.

    Article  CAS  Google Scholar 

  29. L. Lin, H. Wang, H. Luo and P. Xu, Photochem. Photobiol., 2016, 92, 379–387.

    Article  CAS  PubMed  Google Scholar 

  30. O. A. Krysiak, P. J. Barczuk, K. Bienkowski, T. Wojciechowski and J. Augustynski, Catal. Today, 2019, 321322, 52–58.

    Article  CAS  Google Scholar 

  31. M. Plodinec, I. Grčić, M. G. Willinger, A. Hammud, X. Huang, I. Panžić and A. Gajović, J. Alloys Compd., 2019, 776, 883–896.

    Article  CAS  Google Scholar 

  32. S. Murcia-López, M. C. Hidalgo and J. A. Navío, Appl. Catal., A, 2012, 423424, 34–41.

    Article  CAS  Google Scholar 

  33. L. Lin, H. Wang and P. Xu, Chem. Eng. J., 2017, 310, 389–398.

    Article  CAS  Google Scholar 

  34. L. Lin, H. Wang, W. Jiang, A. R. Mkaouar and P. Xu, J. Hazard. Mater., 2017, 333, 162–168.

    Article  CAS  PubMed  Google Scholar 

  35. M. Öner, A. Çöl, C. Pochat-Bohatier and M. Bechelany, RSC Adv., 2016, 6, 90973–90981.

    Article  CAS  Google Scholar 

  36. V. Thangaraj, J. Bussiere, J. M. Janot, M. Bechelany, M. Jaber, S. Subramanian, P. Miele and S. Balme, Eur. J. Inorg. Chem., 2016, 2016, 2125–2130.

    Article  CAS  Google Scholar 

  37. J. Biscarat, M. Bechelany, C. Pochat-Bohatier and P. Miele, Nanoscale, 2015, 7, 613–618.

    Article  CAS  PubMed  Google Scholar 

  38. X. Fu, Y. Hu, Y. Yang, W. Liu and S. Chen, J. Hazard. Mater., 2013, 244245, 102–110.

    Article  PubMed  CAS  Google Scholar 

  39. D. Liu, M. Zhang, W. Xie, L. Sun, Y. Chen and W. Lei, Appl. Catal., B, 2017, 207, 72–78.

    Article  CAS  Google Scholar 

  40. Y. Sheng, J. Yang, F. Wang, L. Liu, H. Liu, C. Yan and Z. Guo, Appl. Surf. Sci., 2019, 465, 154–163.

    Article  CAS  Google Scholar 

  41. D. Liu, W. Cui, J. Lin, Y. Xue, Y. Huang, J. Li, J. Zhang, Z. Liu and C. Tang, Catal. Commun., 2014, 57, 9–13.

    Article  CAS  Google Scholar 

  42. Y. Ide, F. Liu, J. Zhang, N. Kawamoto, K. Komaguchi, Y. Bando and D. Golberg, J. Mater. Chem. A, 2014, 2, 4150–4156.

    Article  CAS  Google Scholar 

  43. M. Nasr, L. Soussan, R. Viter, C. Eid, R. Habchi, P. Miele and M. Bechelany, New J. Chem., 2018, 42, 1250–1259.

    Article  CAS  Google Scholar 

  44. L. Lin, W. Jiang, M. Bechelany, M. Nasr, J. Jarvis, T. Schaub, R. R. Sapkota, P. Miele, H. Wang and P. Xu, Chemosphere, 2019, 220, 921–929.

    Article  CAS  PubMed  Google Scholar 

  45. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J.-M. Herrmann, Appl. Catal., B, 2001, 31, 145–157.

    Article  CAS  Google Scholar 

  46. I. K. Konstantinou and T. A. Albanis, Appl. Catal., B, 2004, 49, 1–14.

    Article  CAS  Google Scholar 

  47. D. Peak, G. W. Luther and D. L. Sparks, Geochim. Cosmochim. Acta, 2003, 67, 2551–2560.

    Article  CAS  Google Scholar 

  48. D. Chen, D. Yang, Q. Wang and Z. Jiang, Ind. Eng. Chem. Res., 2006, 45, 4110–4116.

    Article  CAS  Google Scholar 

  49. W. Zhang, Y. Tang, D. Du, J. Smith, C. Timchalk, D. Liu and Y. Lin, Talanta, 2013, 114, 261–267.

    Article  CAS  PubMed  Google Scholar 

  50. J. Qi, X. Qian, L. Qi, J. Feng, D. Shi and J. Li, Nano Lett., 2012, 12, 1224–1228.

    Article  CAS  PubMed  Google Scholar 

  51. M. Niu, D. Cheng and D. Cao, Sci. Rep., 2014, 4, 4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. N. Wu, H. Wei and L. Zhang, Environ. Sci. Technol., 2012, 46, 419–425.

    Article  CAS  PubMed  Google Scholar 

  53. S. Liao, H. Donggen, D. Yu, Y. Su and G. Yuan, J. Photochem. Photobiol., A, 2004, 168, 7–13.

    Article  CAS  Google Scholar 

  54. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, Nat. Mater., 2006, 5, 782.

    Article  CAS  Google Scholar 

  55. J. Shang, W. Yao, Y. Zhu and N. Wu, Appl. Catal., A, 2004, 257, 25–32.

    Article  CAS  Google Scholar 

  56. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  57. L. Lin, W. Jiang and P. Xu, Sci. Total Environ., 2017, 601602, 857–864.

    Article  PubMed  CAS  Google Scholar 

  58. B. Liu, S. Yan, A. Zhang, Z. Song, Q. Sun, B. Huo, W. Yang, C. J. Barrow and J. Liu, ChemNanoMat, 2019, 5, 784–791.

    Article  CAS  Google Scholar 

  59. M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger and H. Kroiss, Water Res., 2005, 39, 4797–4807.

    Article  CAS  PubMed  Google Scholar 

  60. J. L. Santos, I. Aparicio and E. Alonso, Environ. Int., 2007, 33, 596–601.

    Article  CAS  PubMed  Google Scholar 

  61. B. Kasprzyk-Hordern, R. M. Dinsdale and A. J. Guwy, Water Res., 2009, 43, 363–380.

    Article  CAS  PubMed  Google Scholar 

  62. A. Joss, S. Zabczynski, A. Göbel, B. Hoffmann, D. Löffler, C. S. McArdell, T. A. Ternes, A. Thomsen and H. Siegrist, Water Res., 2006, 40, 1686–1696.

    Article  CAS  PubMed  Google Scholar 

  63. C. W. Chow, R. Fabris and M. Drikas, J. Water Supply: Res. Technol.AQUA, 2004, 53, 85–92.

    Article  CAS  Google Scholar 

  64. S. Liu, M. Lim, R. Fabris, C. Chow, K. Chiang, M. Drikas and R. Amal, Chemosphere, 2008, 72, 263–271.

    Article  CAS  PubMed  Google Scholar 

  65. Y. Lin, T. V. Williams and J. W. Connell, J. Phys. Chem. Lett., 2010, 1, 277–283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyao Wang.

Additional information

These authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Jiang, W., Nasr, M. et al. Enhanced visible light photocatalysis by TiO2–BN enabled electrospinning of nanofibers for pharmaceutical degradation and wastewater treatment. Photochem Photobiol Sci 18, 2921–2930 (2019). https://doi.org/10.1039/c9pp00304e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00304e

Navigation