Skip to main content
Log in

The half-life of 25(OH)D after UVB exposure depends on gender and vitamin D receptor polymorphism but mainly on the start level

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The 25-hydroxy vitamin D (25(OH)D) production caused by UVB exposure is usually underestimated as the concurrent degradation of 25(OH)D is not considered. Therefore, the decrease in 25(OH)D was investigated during a 7-week period in winter when ambient UVB is negligible. Twenty-two healthy Danish individuals (113 samples) participated and had a mean and steady maximal 25(OH)D start level of 132 nmol l−1 (range of 68–216 nmol l−1) due to long-term UVB treatment prior to this study. In this group with high 25(OH)D start levels, the decrease in 25(OH)D was best described by an exponential model. This suggests a quantitatively larger elimination of 25(OH)D at high 25(OH)D start levels. A linear model (logarithm of 25(OH)D) including personal start levels as intercepts and a slope influenced by gender and the vitamin D receptor gene polymorphism rs2228570 explained 87.8% of the observed variation. The mean half-life was 89 days with a difference in half-life of 120 days between a male with rs2228570 genotype GG (59 days) and a female with rs2228570 genotype AA/AG (179 days). Thus, these two parameters explained a large part of the observed inter-individual variation of 25(OH)D. Furthermore, the decrease was analysed in two groups with medium and low 25(OH)D start levels resulting in longer half-lives of 149 days and 199 days, respectively. The longer half-lives at lower 25(OH)D levels may be caused by storage mobilisation, changed catabolism or increased intestinal absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Ross, J. E. Manson, S. A. Abrams, J. F. Aloia, P. M. Brannon, S. K. Clinton, R. A. Durazo-Arvizu, J. C. Gallagher, R. L. Gallo, G. Jones, C. S. Kovacs, S. T. Mayne, C. J. Rosen and S. A. Shapses, The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know, J. Clin. Endocrinol. Metab., 2011, 96, 53–58.

    Article  CAS  PubMed  Google Scholar 

  2. M. F. Holick, T. C. Chen, Z. Lu and E. Sauter, Vitamin D and skin physiology: a D-lightful story, J. Bone Miner. Res., 2007, 22, V28–V33.

    Article  CAS  PubMed  Google Scholar 

  3. M. F. Holick, Vitamin D deficiency, N. Engl. J. Med., 2007, 357, 266–281.

    Article  CAS  PubMed  Google Scholar 

  4. M. F. Holick, N. C. Binkley, H. A. Bischoff-Ferrari, C. M. Gordon, D. A. Hanley, R. P. Heaney, M. H. Murad and C. M. Weaver, Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline, J. Clin. Endocrinol. Metab., 2011, 96, 1911–1930.

    Article  CAS  PubMed  Google Scholar 

  5. J. B. Cheng, D. L. Motola, D. J. Mangelsdorf and D. W. Russell, De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase, J. Biol. Chem., 2003, 278, 38084–38093.

    Article  CAS  PubMed  Google Scholar 

  6. J. B. Cheng, M. A. Levine, N. H. Bell, D. J. Mangelsdorf and D. W. Russell, Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 7711–7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. E. Lawson, D. R. Fraser, E. Kodicek, H. R. Morris and D. H. Williams, Identification of 1, 25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism, Nature, 1971, 230, 228–230.

    Article  CAS  PubMed  Google Scholar 

  8. D. D. Bikle, Vitamin D metabolism, mechanism of action, and clinical applications, Chem. Biol., 2014, 21, 319–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. J. Batchelor and J. E. Compston, Reduced plasma half-life of radio-labelled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet, Br. J. Nutr., 1983, 49, 213–216.

    Article  CAS  PubMed  Google Scholar 

  10. M. R. Clements, M. Davies, D. R. Fraser, G. A. Lumb, E. B. Mawer and P. H. Adams, Metabolic inactivation of vitamin D is enhanced in primary hyperparathyroidism, Clin. Sci., 1987, 73, 659–664.

    Article  CAS  Google Scholar 

  11. K. S. Jones, I. Schoenmakers, L. J. Bluck, S. Ding and A. Prentice, Plasma appearance and disappearance of an oral dose of 25-hydroxyvitamin D2 in healthy adults, Br. J. Nutr., 2012, 107, 1128–1137.

    Article  CAS  PubMed  Google Scholar 

  12. D. E. Prosser and G. Jones, Enzymes involved in the activation and inactivation of vitamin D, Trends Biochem. Sci., 2004, 29, 664–673.

    Article  CAS  PubMed  Google Scholar 

  13. G. Jones, S. A. Strugnell and H. F. DeLuca, Current understanding of the molecular actions of vitamin D, Physiol. Rev., 1998, 78, 1193–1231.

    Article  CAS  PubMed  Google Scholar 

  14. G. Jones, D. E. Prosser and M. Kaufmann, Cytochrome P450-mediated metabolism of vitamin D, J. Lipid Res., 2014, 55, 13–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. D. Lindh, L. Bjorkhem-Bergman and E. Eliasson, Vitamin D and drug-metabolising enzymes, Photochem. Photobiol. Sci., 2012, 11, 1797–1801.

    Article  CAS  PubMed  Google Scholar 

  16. T. Sakaki, N. Sawada, Y. Nonaka, Y. Ohyama and K. Inouye, Metabolic studies using recombinant escherichia coli cells producing rat mitochondrial CYP24 CYP24 can convert 1alpha, 25-dihydroxyvitamin D3 to calcitroic acid, Eur. J. Biochem., 1999, 262, 43–48.

    Article  CAS  PubMed  Google Scholar 

  17. T. Sakaki, N. Sawada, K. Komai, S. Shiozawa, S. Yamada, K. Yamamoto, Y. Ohyama and K. Inouye, Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24, Eur. J. Biochem., 2000, 267, 6158–6165.

    Article  CAS  PubMed  Google Scholar 

  18. M. K. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, A small suberythemal UVB dose every second week is sufficient to maintain summer vitamin D levels: a randomized controlled trial, Br. J. Dermatol., 2011, 166, 430–433.

    Article  CAS  Google Scholar 

  19. M. K. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation, J. Invest. Dermatol., 2010, 26, 546–553.

    Article  CAS  Google Scholar 

  20. M. D. Farrar, A. R. Webb, R. Kift, M. T. Durkin, D. Allan, A. Herbert, J. L. Berry and L. E. Rhodes, Efficacy of a dose range of simulated sunlight exposures in raising vitamin D status in South Asian adults: implications for targeted guidance on sun exposure, Am. J. Clin. Nutr., 2013, 97, 1210–1216.

    Article  CAS  PubMed  Google Scholar 

  21. M. D. Farrar, R. Kift, S. J. Felton, J. L. Berry, M. T. Durkin, D. Allan, A. Vail, A. R. Webb and L. E. Rhodes, Recommended summer sunlight exposure amounts fail to produce sufficient vitamin D status in UK adults of South Asian origin, Am. J. Clin. Nutr., 2011, 94, 1219–1224.

    Article  CAS  PubMed  Google Scholar 

  22. R. McKenzie, R. Scragg, B. Liley, P. Johnston, J. Wishart, A. Stewart and R. Prematunga, Serum 25-hydroxyvitamin-D responses to multiple UV exposures from solaria: inferences for exposure to sunlight, Photochem. Photobiol. Sci., 2012, 11, 1174–1185.

    Article  CAS  PubMed  Google Scholar 

  23. P. Datta, P. A. Philipsen, P. Olsen, B. Petersen, P. Johansen, N. Morling and H. C. Wulf, Major inter-personal variation in the increase and maximal level of 25-hydroxy vitamin D induced by UVB, Photochem. Photobiol. Sci., 2016, 15, 536–545.

    Article  CAS  PubMed  Google Scholar 

  24. W. Becker, N. Lyhne, A. N. Pedersen, A. Aro, M. Fogelholm, I. Phorsdottir, J. Alexander, S. A. Anderssen, H. M. Meltzer and J. I. Pedersen, Nordic Nutrition Recommendations 2004 - integrating nutrition and physical activity, Scand. J. Nutr., 2004, 48, 178–187.

    Article  Google Scholar 

  25. C. Brot, P. Vestergaard, N. Kolthoff, J. Gram, A. P. Hermann and O. H. Sorensen, Vitamin D status and its adequacy in healthy Danish perimenopausal women: relationships to dietary intake, sun exposure and serum parathyroid hormone, Br. J. Nutr., 2001, 86 Suppl 1, S97–103.

    Article  CAS  PubMed  Google Scholar 

  26. P. Datta, M. K. Bogh, P. Olsen, P. Eriksen, A. V. Schmedes, M. M. Grage, P. A. Philipsen and H. C. Wulf, Increase in serum 25-hydroxyvitamin-D(3) in humans after solar exposure under natural conditions compared to artificial UVB exposure of hands and face, Photochem. Photobiol. Sci., 2012, 11, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  27. M. K. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, Interdependence between body surface area and ultraviolet B dose in vitamin D production: a randomized controlled trial, Br. J. Dermatol., 2011, 164, 163–169.

    Article  CAS  PubMed  Google Scholar 

  28. S. S. Harris, B. Dawson-Hughes, Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women, Am. J. Clin. Nutr., 1998, 67, 1232–1236.

    Article  CAS  PubMed  Google Scholar 

  29. J. I. Pedersen, Vitamin D requirement and setting recommendation levels - current Nordic view, Nutr. Rev., 2008, 66, S165–S169.

    Article  PubMed  Google Scholar 

  30. S. A. Rice, M. Carpenter, A. Fityan, L. M. Vearncombe, M. Ardern-Jones, A. A. Jackson, C. Cooper, J. Baird and E. Healy, Limited exposure to ambient ultraviolet radiation and 25-hydroxyvitamin D levels: a systematic review, Br. J. Dermatol., 2015, 172, 652–661.

    Article  CAS  PubMed  Google Scholar 

  31. G. Jones, D. E. Prosser and M. Kaufmann, 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D, Arch. Biochem. Biophys., 2012, 523, 9–18.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Xu, T. Hashizume, M. C. Shuhart, C. L. Davis, W. L. Nelson, T. Sakaki, T. F. Kalhorn, P. B. Watkins, E. G. Schuetz and K. E. Thummel, Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1alpha, 25-dihydroxyvitamin D(3): implications for drug-induced osteomalacia, Mol. Pharmacol., 2006, 69, 56–65.

    Article  CAS  PubMed  Google Scholar 

  33. Z. Wang, Y. S. Lin, X. E. Zheng, T. Senn, T. Hashizume, M. Scian, L. J. Dickmann, S. D. Nelson, T. A. Baillie, M. F. Hebert, D. Blough, C. L. Davis and K. E. Thummel, An inducible cytochrome P450 3A4-dependent vitamin D catabolic pathway, Mol. Pharmacol., 2012, 81, 498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Christakos, P. Dhawan, A. Verstuyf, L. Verlinden and G. Carmeliet, Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects, Physiol. Rev., 2016, 96, 365–408.

    Article  CAS  PubMed  Google Scholar 

  35. C. Zierold, G. G. Reinholz, J. A. Mings, J. M. Prahl and H. F. DeLuca, Regulation of the procine 1, 25-dihydroxyvitamin D3-24-hydroxylase (CYP24) by 1, 25-dihydroxyvitamin D3 and parathyroid hormone in AOK-B50 cells, Arch. Biochem. Biophys., 2000, 381, 323–327.

    Article  CAS  PubMed  Google Scholar 

  36. C. Zierold, J. A. Mings and H. F. DeLuca, Parathyroid hormone regulates 25-hydroxyvitamin D(3)-24-hydroxylase mRNA by altering its stability, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 13572–13576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. St-Arnaud, Targeted inactivation of vitamin D hydroxylases in mice, Bone, 1999, 25, 127–129.

    Article  CAS  PubMed  Google Scholar 

  38. S. Masuda, V. Byford, A. Arabian, Y. Sakai, M. B. Demay, R. St-Arnaud and G. Jones, Altered pharmacokinetics of 1alpha, 25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse, Endocrinology, 2005, 146, 825–834.

    Article  CAS  PubMed  Google Scholar 

  39. S. J. Rosenstreich, C. Rich and W. Volwiler, Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat, J. Clin. Invest., 1971, 50, 679–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R. P. Heaney, R. R. Recker, J. Grote, R. L. Horst and L. A. Armas, Vitamin D(3) is more potent than vitamin D(2) in humans, J. Clin. Endocrinol. Metab., 2011, 96, E447–E452.

    Article  CAS  PubMed  Google Scholar 

  41. D. A. Brouwer, B. J. van, H. Ferwerda, A. M. Brugman, F. R. van der Klis, H. J. van der Heiden and F. A. Muskiet, Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose, Br. J. Nutr., 1998, 79, 527–532.

    Article  CAS  PubMed  Google Scholar 

  42. M. Abboud, M. S. Rybchyn, R. Rizk, D. R. Fraser and R. S. Mason, Sunlight exposure is just one of the factors which influence vitamin D status, Photochem. Photobiol. Sci., 2017, 302–313.

    Google Scholar 

  43. P. Bec, F. Bayard and J. P. Louvet, 25-Hydroxycholecalciderol dynamics in human plasma, Rev. Eur. Etud. Clin. Biol., 1972, 17, 793–796.

    CAS  PubMed  Google Scholar 

  44. R. W. Gray, H. P. Weber, J. H. Dominguez, J. Lemann Jr., The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans, J. Clin. Endocrinol. Metab., 1974, 39, 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  45. J. G. Haddad Jr. and S. Rojanasathit, Acute administration of 25-hydroxycholecalciferol in man, J. Clin. Endocrinol. Metab., 1976, 42, 284–290.

    Article  CAS  PubMed  Google Scholar 

  46. K. S. Jones, S. Assar, D. Harnpanich, R. Bouillon, D. Lambrechts, A. Prentice and I. Schoenmakers, 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype, J. Clin. Endocrinol. Metab., 2014, 99, 3373–3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K. S. Jones, S. Assar, D. Vanderschueren, R. Bouillon, A. Prentice and I. Schoenmakers, Predictors of 25(OH)D half-life and plasma 25(OH)D concentration in The Gambia and the UK, Osteoporosis Int., 2015, 26, 1137–1146.

    Article  CAS  Google Scholar 

  48. E. B. Mawer, K. Schaefer, G. A. Lumb and S. W. Stanbury, The metabolism of isotopically labelled vitamin D3 in man: the influence of the state of vitamin D nutrition, Clin. Sci., 1971, 40, 39–53.

    Article  CAS  PubMed  Google Scholar 

  49. J. E. Smith and D. S. Goodman, The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma, J. Clin. Invest., 1971, 50, 2159–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D. Vicchio, A. Yergey, K. O’Brien, L. Allen, R. Ray and M. Holick, Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry, Biol. Mass Spectrom., 1993, 22, 53–58.

    Article  CAS  PubMed  Google Scholar 

  51. S. Christakos, D. V. Ajibade, P. Dhawan, A. J. Fechner and L. J. Mady, Vitamin D: metabolism, Rheum. Dis. Clin. North Am., 2012, 38, 1–11, vii.

    Article  PubMed  Google Scholar 

  52. P. Dhawan, X. Peng, A. L. Sutton, P. N. MacDonald, C. M. Croniger, C. Trautwein, M. Centrella, T. L. McCarthy and S. Christakos, Functional cooperation between CCAAT/enhancer-binding proteins and the vitamin D receptor in regulation of 25-hydroxyvitamin D3 24-hydroxylase, Mol. Cell Biol., 2005, 25, 472–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. C. S. Hii and A. Ferrante, The Non-Genomic Actions of Vitamin D, Nutrients, 2016, 8, 135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. P. R. Ebeling, Vitamin D and bone health: Epidemiologic studies, BoneKEy Rep., 2014, 3, 511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. A. J. Berlanga-Taylor and J. C. Knight, An integrated approach to defining genetic and environmental determinants for major clinical outcomes involving vitamin d, Mol. Diagn. Ther., 2014, 18, 261–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. G. P. Levin, C. Robinson-Cohen, I. H. de Boer, D. K. Houston, K. Lohman, Y. Liu, S. B. Kritchevsky, J. A. Cauley, T. Tanaka, L. Ferrucci, S. Bandinelli, K. V. Patel, E. Hagstrom, K. Michaelsson, H. Melhus, T. Wang, M. Wolf, B. M. Psaty, D. Siscovick and B. Kestenbaum, Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes, J. Am. Med. Assoc., 2012, 308, 1898–1905.

    Article  CAS  Google Scholar 

  57. T. J. Wang, F. Zhang, J. B. Richards, B. Kestenbaum, J. B. van Meurs, D. Berry, D. P. Kiel, E. A. Streeten, C. Ohlsson, D. L. Koller, L. Peltonen, J. D. Cooper, P. F. O’Reilly, D. K. Houston, N. L. Glazer, L. Vandenput, M. Peacock, J. Shi, F. Rivadeneira, M. I. McCarthy, P. Anneli, I. H. de Boer, M. Mangino, B. Kato, D. J. Smyth, S. L. Booth, P. F. Jacques, G. L. Burke, M. Goodarzi, C. L. Cheung, M. Wolf, K. Rice, D. Goltzman, N. Hidiroglou, M. Ladouceur, N. J. Wareham, L. J. Hocking, D. Hart, N. K. Arden, C. Cooper, S. Malik, W. D. Fraser, A. L. Hartikainen, G. Zhai, H. M. Macdonald, N. G. Forouhi, R. J. Loos, D. M. Reid, A. Hakim, E. Dennison, Y. Liu, C. Power, H. E. Stevens, L. Jaana, R. S. Vasan, N. Soranzo, J. Bojunga, B. M. Psaty, M. Lorentzon, T. Foroud, T. B. Harris, A. Hofman, J. O. Jansson, J. A. Cauley, A. G. Uitterlinden, Q. Gibson, M. R. Jarvelin, D. Karasik, D. S. Siscovick, M. J. Econs, S. B. Kritchevsky, J. C. Florez, J. A. Todd, J. Dupuis, E. Hypponen and T. D. Spector, Common genetic determinants of vitamin D insufficiency: a genome-wide association study, Lancet, 2010, 376, 180–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J. C. Gallagher, V. Yalamanchili and L. M. Smith, The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women, J. Steroid Biochem. Mol. Biol., 2013, 136, 195–200.

    Article  CAS  PubMed  Google Scholar 

  59. P. Lee, J. R. Greenfield, M. J. Seibel, J. A. Eisman and J. R. Center, Adequacy of vitamin D replacement in severe deficiency is dependent on body mass index, Am. J. Med., 2009, 122, 1056–1060.

    Article  CAS  PubMed  Google Scholar 

  60. P. Saneei, A. Salehi-Abargouei and A. Esmaillzadeh, Serum 25-hydroxy vitamin D levels in relation to body mass index: a systematic review and meta-analysis, Obes. Rev., 2013, 14, 393–404.

    Article  CAS  PubMed  Google Scholar 

  61. J. R. Delanghe, R. Speeckaert and M. M. Speeckaert, Behind the scenes of vitamin D binding protein: more than vitamin D binding, Best. Pract. Res., Clin. Endocrinol. Metab., 2015, 29, 773–786.

    Article  CAS  Google Scholar 

  62. C. E. Powe, M. K. Evans, J. Wenger, A. B. Zonderman, A. H. Berg, M. Nalls, H. Tamez, D. Zhang, I. Bhan, S. A. Karumanchi, N. R. Powe and R. Thadhani, Vitamin D-binding protein and vitamin D status of black Americans and white Americans, N. Engl. J. Med., 2013, 369, 1991–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. P. Yousefzadeh, S. A. Shapses and X. Wang, Vitamin D Binding Protein Impact on 25-Hydroxyvitamin D Levels under Different Physiologic and Pathologic Conditions, Int. J. Endocrinol., 2014, 2014, 981581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. A. R. Webb, L. Kline and M. F. Holick, Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin, J. Clin. Endocrinol. Metab., 1988, 67, 373–378.

    Article  CAS  PubMed  Google Scholar 

  65. T. B. Fitzpatrick, The validity and practicality of sun-reactive skin types I through VI, Arch. Dermatol., 1988, 124, 869–871.

    Article  CAS  PubMed  Google Scholar 

  66. H. C. Wulf, Method and an apparatus for determining an individual’s ability to stand exposure to ultraviolet radiation, America Patent and Trademark Office, US Patent4882598, 1986, 1–32

    Google Scholar 

  67. P. Armitage, G. Berry and J. N. S. Matthews, Statistical Methods in Medical Research, Wiley-Blackwell, 2001, ch. 11, pp.312–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pameli Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, P., Philipsen, P.A., Olsen, P. et al. The half-life of 25(OH)D after UVB exposure depends on gender and vitamin D receptor polymorphism but mainly on the start level. Photochem Photobiol Sci 16, 985–995 (2017). https://doi.org/10.1039/c6pp00258g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00258g

Navigation