Skip to main content
Log in

Self-assembly of organic dyes in supramolecular aggregates

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Many scientists probably consider dye aggregation in solution a curse. Here, the adjective “many” should be stressed, as some other researchers thrive on forcing dyes to aggregate in solution. This perspective paper is certainly not meant to be a comprehensive review on the topic. However, for people intrigued by this pervasive phenomenon, I will try to offer a general picture on the self-assembly of dyes into supramolecular aggregates by presenting and discussing key information on their thermodynamics, kinetics, and optical changes. More recent topics will be introduced, such as the impact of external stimuli on dye aggregation, with a particular focus on ion specific effects. Finally, aggregation-induced emission will also be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Karsenti, Self-organization in cell biology: a brief history, Nat. Rev. Mol. Cell Biol., 2008, 9, 255–262.

    Article  CAS  PubMed  Google Scholar 

  2. D. Philp, J. F. Stoddart, Self-assembly in natural and unnatural systems, Angew. Chem., Int. ed. Engl., 1996, 35, 1155–1196.

    Article  CAS  Google Scholar 

  3. S. E. Sheppard, The Optical and Sensitizing Properties of the Isocyanine Dyes, J. Chem. Soc. Trans., 1909, 95, 15–19.

    Article  CAS  Google Scholar 

  4. E. E. Jelley, Spectral absorption and fluorescence of dyes in the molecular state, Nature, 1936, 138, 1009–1010.

    Article  CAS  Google Scholar 

  5. E. E. Jelley, Molecular, nematic and crystal states of 1,1′-diethyl-ψ-cyanine chloride, Nature, 1937, 139, 631–632.

    Article  CAS  Google Scholar 

  6. G. Scheibe, The variation of absorption spectra in solutions and the side valences as its cause, Angew. Chem., 1937, 50, 212–219.

    Article  CAS  Google Scholar 

  7. G. Scheibe, L. Kandler, H. Ecker, Polymerization and polymeric adsorption as cause of novel absorption bands of organic dyes, Naturwissenschaften, 1937, 25, 75.

    Article  CAS  Google Scholar 

  8. F. Wuerthner, T. E. Kaiser, C. R. Saha-Moeller, J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials, Angew. Chem., Int. Ed., 2011, 50, 3376–3410.

    Article  CAS  Google Scholar 

  9. W. West, S. Pearce, The dimeric state of cyanine dyes, J. Phys. Chem., 1965, 69, 1894–1903.

    Article  CAS  Google Scholar 

  10. A. H. Herz, Aggregation of sensitizing dyes in solution and their adsorption onto silver halides, Adv. Colloid Interface Sci., 1977, 8, 237–298.

    Article  CAS  Google Scholar 

  11. B. I. Shapiro, Molecular assemblies of polymethine dyes, Russ. Chem. Rev., 2006, 75, 433–456.

    Article  CAS  Google Scholar 

  12. A. H. Herz, Dye-Dye interactions of cyanines in solution and at silver bromide surfaces, Photogr. Sci. Eng., 1974, 18, 323–335.

    CAS  Google Scholar 

  13. H. Liu, J. Xu, Y. Li, Y. Li, Aggregate Nanostructures of Organic Molecular Materials, Acc. Chem. Res., 2010, 43, 1496–1508.

    Article  CAS  PubMed  Google Scholar 

  14. J. Sung, P. Kim, B. Fimmel, F. Wurthner, D. Kim, Direct observation of ultrafast coherent exciton dynamics in helical p-stacks of self-assembled perylene bisimides, Nat. Commun., 2015, 6, 8646.

    Article  CAS  PubMed  Google Scholar 

  15. A. P. H. J. Schenning, P. Jonkheijm, F. J. M. Hoeben, J. Van Herrikhuyzen, S. C. J. Meskers, E. W. Meijer, L. M. Herz, C. Daniel, C. Silva, R. T. Phillips, R. H. Friend, D. Beljonne, A. Miura, S. De Feyter, M. Zdanowska, H. Uji-I, F. C. De Schryver, Z. Chen, F. Wuerthner, M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, Towards supramolecular electronics, Synth. Met., 2004, 147, 43–48.

    Article  CAS  Google Scholar 

  16. G. Shanker, G. Hegde, C. Rodriguez-Abreu, Self-assembly of thiacyanine dyes in water for the synthesis of active hybrid nanofibres, Liq. Cryst., 2016, 43, 473–483.

    Article  CAS  Google Scholar 

  17. A. Arjona-Esteban, J. Krumrain, A. Liess, M. Stolte, L. Huang, D. Schmidt, V. Stepanenko, M. Gsaenger, D. Hertel, K. Meerholz, F. Wuerthner, Influence of Solid-State Packing of Dipolar Merocyanine Dyes on Transistor and Solar Cell Performances, J. Am. Chem. Soc., 2015, 137, 13524–13534.

    Article  CAS  PubMed  Google Scholar 

  18. A. Lv, M. Stolte, F. Wuerthner, Head-to-Tail Zig-Zag Packing of Dipolar Merocyanine Dyes Affords High-Performance Organic Thin-Film Transistors, Angew. Chem., Int. Ed., 2015, 54, 10512–10515.

    Article  CAS  Google Scholar 

  19. J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Aggregation-Induced Emission: Together We Shine, United We Soar!, Chem. Rev., 2015, 115, 11718–11940.

    Article  CAS  PubMed  Google Scholar 

  20. X. Hui, D. Xu, K. Wang, W. Yu, H. Yuan, M. Liu, Z. Shen, X. Zhang, Y. Wei, Supermolecular self assembly of AIE-active nanoprobes: fabrication and bioimaging applications, RSC Adv., 2015, 5, 107355–107359.

    Article  CAS  Google Scholar 

  21. A. S. Davydov, Theory of Molecular Excitons, Plenum, 1971.

    Book  Google Scholar 

  22. M. Kasha, Molecular excitons in small aggregates, NATO Adv. Study Inst. Ser., Ser. B, 1976, B12, 337–363.

    Google Scholar 

  23. M. Kasha, H. R. Rawls, M. Ashraf El-Bayoumi, The Exciton Model in Molecular Spectroscopy, Pure Appl. Chem., 1965, 11, 371–392.

    Article  CAS  Google Scholar 

  24. S. K. Saikin, A. Eisfeld, S. Valleau, A. Aspuru-Guzik, Photonics meets excitonics: natural and artificial molecular aggregates, Nanophotonics, 2013, 2, 21–38.

    Article  CAS  Google Scholar 

  25. G. D. Scholes, G. Rumbles, Excitons in nanoscale systems, Nat. Mater., 2006, 5, 683–696.

    Article  CAS  PubMed  Google Scholar 

  26. A. Chenu, G. D. Scholes, Coherence in energy transfer and photosynthesis, Annu. Rev. Phys. Chem., 2015, 66, 69–96.

    Article  CAS  PubMed  Google Scholar 

  27. E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, G. D. Scholes, Energy Transfer Pathways in Light-Harvesting Complexes of Purple Bacteria as Revealed by Global Kinetic Analysis of Two-Dimensional Transient Spectra, J. Phys. Chem. B, 2013, 117, 11349–11362.

    Article  CAS  PubMed  Google Scholar 

  28. L. Michaelis, Reversible polymerization and molecular aggregation, J. Phys. Colloid Chem., 1950, 54, 1–17.

    Article  CAS  Google Scholar 

  29. L. Costantino, G. Guarino, O. Ortona, V. Vitagliano, Acridine orange association equilibrium in aqueous solution, J. Chem. Eng. Data, 1984, 29, 62–66.

    Article  CAS  Google Scholar 

  30. B. H. Robinson, A. Loeffler, G. Schwarz, Thermodynamic behavior of acridine orange in solution. Model system for studying stacking and charge effects on self-aggregation, J. Chem. Soc., Faraday Trans. 1, 1973, 56–69.

    Google Scholar 

  31. L. P. Gianneschi, T. Kurucsev, Derivation and interpretation of the spectra of aggregates. 3. Prediction analytical study of the spectrum of Pyronine Y in aqueous solution, J. Chem. Soc., Faraday Trans. 2, 1974, 1334–1342.

    Google Scholar 

  32. J. Gormally, S. Higson, Aggregation in aqueous solution of the dye Pyronine G, J. Chem. Soc., Faraday Trans. 1, 1986, 157–160.

    Google Scholar 

  33. E. Wyn-Jones, and J. Gormally, and Editors, Studies in Physical and Theoretical Chemistry, Vol. 26: Aggregation Processes in Solution, Elsevier, 1983.

    Google Scholar 

  34. J. Georges, Deviations from Beer’s law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements, Spectrochim. Acta, Part A, 1995, 51, 985–994.

    Article  Google Scholar 

  35. S. M. Mooi, S. N. Keller, B. Heyne, Forcing Aggregation of Cyanine Dyes with Salts: A Fine Line between Dimers and Higher Ordered Aggregates, Langmuir, 2014, 30, 9654–9662.

    Article  CAS  PubMed  Google Scholar 

  36. J. K. Ghosh, A. K. Mandal, M. K. Pal, Energy transfer from thiacyanine to acridine orange facilitated by DNA, Spectrochim. Acta, Part A, 1999, 55, 1877–1886.

    Article  Google Scholar 

  37. A. K. Mandal, M. K. Pal, Spectral analysis of complexes of the dye, 3,3’ -diethyl thiacyanine and the anionic surfactant, SDS by the principal component analysis method, Spectrochim. Acta, Part A, 1999, 55, 1347–1358.

    Article  Google Scholar 

  38. E. Coates, Aggregation of dyes in aqueous solutions, J. Soc. Dyers Colour., 1969, 85, 355–368.

    Article  CAS  Google Scholar 

  39. A. D. Buckingham, P. W. Fowler, J. M. Hutson, Theoretical studies of van der Waals molecules and intermolecular forces, Chem. Rev., 1988, 88, 963–988.

    Article  CAS  Google Scholar 

  40. K. L. Arvan, N. E. Zaitseva, Spectral Investigation of the Influence of the Solvent on the Aggregation of Organic Dyes, Opt. Spectrosc., 1961, 10, 137.

    Google Scholar 

  41. Z. Chen, A. Lohr, C. R. Saha-Moeller, F. Wuerthner, Self-assembled p-stacks of functional dyes in solution: structural and thermodynamic features, Chem. Soc. Rev., 2009, 38, 564–584.

    Article  CAS  PubMed  Google Scholar 

  42. R. Margalit, N. Shaklai, S. Cohen, Fluorimetric studies on the dimerization equilibrium of protoporphyrin IX and its haemato derivative, Biochem. J., 1983, 209, 547–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. W. Spencer, J. R. Sutter, Kinetic study of the monomer-dimer equilibrium of methylene blue in aqueous solution, J. Phys. Chem., 1979, 83, 1573–1576.

    Article  CAS  Google Scholar 

  44. S. M. Mooi, B. Heyne, Size Does Matter: How To Control Organization of Organic Dyes in Aqueous Environment Using Specific Ion Effects, Langmuir, 2012, 28, 16524–16530.

    Article  CAS  PubMed  Google Scholar 

  45. A. Elbergali, J. Nygren, M. Kubista, An automated procedure to predict the number of components in spectroscopic data, Anal. Chim. Acta, 1999, 379, 143–158.

    Article  CAS  Google Scholar 

  46. M. Kubista, R. Sjoeback, B. Albinsson, Determination of equilibrium constants by chemometric analysis of spectroscopic data, Anal. Chem., 1993, 65, 994–998.

    Article  CAS  Google Scholar 

  47. M. Kubista, R. Sjoeback, J. Nygren, Quantitative spectral analysis of multicomponent equilibria, Anal. Chim. Acta, 1995, 302, 121–125.

    Article  CAS  Google Scholar 

  48. I. Scarminio, M. Kubista, Analysis of correlated spectral data, Anal. Chem., 1993, 65, 409–416.

    Article  CAS  Google Scholar 

  49. B. H. Robinson, A. Seelig-Loeffler, G. Schwarz, Kinetic and amplitude measurements for the process of association of Acridine Orange studied by temperature-jump relaxation spectroscopy, J. Chem. Soc., Faraday Trans. 1, 1975, 815–830.

    Google Scholar 

  50. A. Adenier, J. Aubard, T-jump chemical relaxation and differential spectrophotometry measurements for the determination of association constants of aqueous dyes, J. Chim. Phys. Phys.-Chim. Biol., 1987, 84, 921–927.

    Article  CAS  Google Scholar 

  51. S. B. Brown, M. Shillcock, P. Jones, Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution, Biochem. J., 1976, 153, 279–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M. Krishnamurthy, J. R. Sutter, P. Hambright, Monomer-dimer equilibration of water-soluble porphyrins as a function of the coordinated metal ion, J. Chem. Soc., Chem. Commun., 1975, 13–14.

    Google Scholar 

  53. K. Murakami, K. Mizuguchi, Y. Kubota, Y. Fujisaki, Equilibrium and kinetic studies of the dimerization of acridine orange and its 10-alkyl derivatives, Bull. Chem. Soc. Jpn., 1986, 59, 3393–3397.

    Article  CAS  Google Scholar 

  54. D. H. Turner, G. W. Flynn, S. K. Lundberg, L. D. Faller, N. Sutin, Dimerization of proflavine by the laser Raman temperature-jump method, Nature, 1972, 239, 215–217.

    Article  CAS  PubMed  Google Scholar 

  55. K. Murakami, Thermodynamic and kinetic aspects of self-association of dyes in aqueous solution, Dyes Pigm., 2002, 53, 31–43.

    Article  CAS  Google Scholar 

  56. A. Chibisov, T. Slavnova, H. Görner, Self-assembly of polymethine dye molecules in solutions: Kinetic aspects of aggregation, Nanotechnol. Russ., 2008, 3, 19–34.

    Google Scholar 

  57. A. K. Chibisov, T. D. Slavnova, H. Gorner, Dimerization kinetics of thiacarbocyanine dyes by photochemically induced concentration jump, Chem. Phys. Lett., 2004, 386, 301–306.

    Article  CAS  Google Scholar 

  58. E. G. McRae, M. Kasha, Enhancement of phosphorescence ability upon aggregation of dye molecules, J. Chem. Phys., 1958, 28, 721–722.

    Article  CAS  Google Scholar 

  59. O. Valdes-Aguilera, D. C. Neckers, Aggregation phenomena in xanthene dyes, Acc. Chem. Res., 1989, 22, 171–177.

    Article  CAS  Google Scholar 

  60. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 3rd edn, 2006.

    Book  Google Scholar 

  61. N. J. Turro, J. C. Scaiano, and V. Ramanurthy, Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito, 2010.

    Google Scholar 

  62. B. Valeur, Molecular Fluorescence, Wiley-VCH Verlag GmbH, Weinheim, 2002.

    Google Scholar 

  63. G. Lanzani, Photophysics Behind Photovoltaics and Photonics, Wiley, 2014.

    Google Scholar 

  64. U. Rosch, S. Yao, R. Wortmann, F. Wurthner, Fluoresceut H-aggregates of merocyanine dyes, Angew. Chem., Int. Ed., 2006, 45, 7026–7030.

    Article  CAS  Google Scholar 

  65. V. Lau, B. Heyne, Calix[4]arene sulfonate as a template for forming fluorescent thiazole orange H-aggregates, Chem. Commun., 2010, 46, 3595–3597.

    Article  CAS  Google Scholar 

  66. F. C. Spano, The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates, Acc. Chem. Res., 2010, 43, 429–439.

    Article  CAS  PubMed  Google Scholar 

  67. F. C. Spano, C. Silva, H- and J-aggregate behavior in polymeric semiconductors, Annu. Rev. Phys. Chem., 2014, 65, 477–500.

    Article  CAS  PubMed  Google Scholar 

  68. F. C. Spano, Analysis of the UV/Vis and CD Spectral Line Shapes of Carotenoid Assemblies: Spectral Signatures of Chiral H-Aggregates, J. Am. Chem. Soc., 2009, 131, 4267–4278.

    Article  CAS  PubMed  Google Scholar 

  69. F. Wuerthner, C. R. Saha-Moeller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem. Rev., 2016, 116, 962–1052.

    Article  CAS  Google Scholar 

  70. A. T. Haedler, H. Misslitz, C. Buehlmeyer, R. Q. Albuquerque, A. Koehler, H.-W. Schmidt, Controlling the p-Stacking Behavior of Pyrene Derivatives: Influence of H-Bonding and Steric Effects in Different States of Aggregation, ChemPhysChem, 2013, 14, 1818–1829.

    Article  CAS  PubMed  Google Scholar 

  71. H. V. Berlepsch, C. Boettcher, H-Aggregates of an Indocyanine Cy5 Dye: Transition from Strong to Weak Molecular Coupling, J. Phys. Chem. B, 2015, 119, 11900–11909.

    Article  CAS  Google Scholar 

  72. P. W. Atkins, and J. De Paula, Physical Chemistry, 9th ed, W.H. Freeman and Co., New York, 9th edn, 2010.

    Google Scholar 

  73. J.-L. M. Poiseuille, Sur le mouvement des liquides de nature différente dans les tubes de très petits diamètres, Ann. Chim. Phys., 1847, 21, 76–110.

    Google Scholar 

  74. W. Kunz, Specific ion effects in colloidal and biological systems, Curr. Opin. Colloid Interface Sci., 2010, 15, 34–39.

    Article  CAS  Google Scholar 

  75. W. Kunz, J. Henle, B. W. Ninham, ‘Zur Lehre von der Wirkung der Salze’ (About the science of the effect of salts): Franz Hofmeister’s historical papers, Curr. Opin. Colloid Interface Sci., 2004, 9, 19–37.

    Article  CAS  Google Scholar 

  76. Y. J. Zhang, P. S. Cremer, Interactions between macromolecules and ions: the Hofmeister series, Curr. Opin. Chem. Biol., 2006, 10, 658–663.

    Article  CAS  PubMed  Google Scholar 

  77. E. Daltrozzo, G. Scheibe, K. Gschwind, F. Haimerl, Structure of the J-aggregates of pseudoisocyanine, Photogr. Sci. Eng., 1974, 18, 441–450.

    CAS  Google Scholar 

  78. O. Valdes-Aguilera, D. C. Neckers, Aggregation of rose bengal ethyl ester induced by alkali metal cations in aqueous solution, J. Photochem. Photobiol., A, 1989, 47, 213–222.

    Article  CAS  Google Scholar 

  79. B. Neumann, On the Aggregation Behavior of Pseudoisocyanine Chloride in Aqueous Solution as Probed by UV/vis Spectroscopy and Static Light Scattering, J. Phys. Chem. B, 2001, 105, 8268–8274.

    Article  CAS  Google Scholar 

  80. S. A. Shapovalov, Y. A. Svishcheva, Effect of Cationic Surfactants on Association of Pinacyanol with Organic Counterions, Russ. J. Appl. Chem., 2002, 75, 452–456.

    Article  CAS  Google Scholar 

  81. A. V. Sorokin, Control of optical properties of polymethine dye J-aggregates using different additives, J. Appl. Spectrosc., 2009, 76, 234–239.

    Article  CAS  Google Scholar 

  82. I. A. Struganova, H. Lim, S. A. Morgan, The influence of inorganic salts and bases on the formation of the J-band in the absorption and fluorescence spectra of the diluted aqueous solutions of TDBC, J. Phys. Chem. B, 2002, 106, 11047–11050.

    Article  CAS  Google Scholar 

  83. H. Yao, T. Isohashi, K. Kimura, Electrolyte-induced mesoscopic aggregation of thiacarbocyanine dye in aqueous solution: Counterion size specificity, J. Phys. Chem. B, 2007, 111, 7176–7183.

    Article  CAS  PubMed  Google Scholar 

  84. K. T. Arun, B. Epe, D. Ramaiah, Aggregation Behavior of Halogenated Squaraine Dyes in Buffer, Electrolytes, Organized Media, and DNA, J. Phys. Chem. B, 2002, 106, 11622–11627.

    Article  CAS  Google Scholar 

  85. K. D. Collins, Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions, Biophys. Chem., 2012, 167, 33–49.

    Article  CAS  Google Scholar 

  86. K. D. Collins, G. W. Neilson, J. E. Enderby, Ions in water: Characterizing the forces that control chemical processes and biological structure, Biophys. Chem., 2007, 128, 95–104.

    Article  CAS  PubMed  Google Scholar 

  87. E. K. Batchelor, S. Gadde, A. E. Kaifer, Host-guest control on the formation of pinacyanol chloride H-aggregates in anionic polyelectrolyte solutions, Supramol. Chem., 2010, 22, 40–45.

    Article  CAS  Google Scholar 

  88. M. K. Pal, B. K. Ghosh, Metachromasia of pinacyanol chloride induced by synthetic polyanions, Makromol. Chem., 1979, 180, 959–967.

    Article  CAS  Google Scholar 

  89. M. K. Pal, B. K. Ghosh, Not all polyanions induce a J-band in the dye pseudoisocyanine, Makromol. Chem., 1980, 181, 1459–1467.

    Article  CAS  Google Scholar 

  90. C. Peyratout, E. Donath, L. Daehne, Electrostatic interactions of cationic dyes with negatively charged polyelectrolytes in aqueous solution, J. Photochem. Photobiol., A, 2001, 142, 51–57.

    Article  CAS  Google Scholar 

  91. C. Peyratout, E. Donath, L. Daehne, Investigation of pseudoisocyanine aggregates formed on polystyrenesulfonate, Photochem. Photobiol. Sci., 2002, 1, 87–91.

    Article  CAS  PubMed  Google Scholar 

  92. T. D. Slavnova, A. K. Chibisov, H. Goerner, Photoprocesses of thiacarbocyanine monomers, dimers, and aggregates bound to polyanions, J. Phys. Chem. A, 2002, 106, 10985–10990.

    Article  CAS  Google Scholar 

  93. N. Basilio, A. Pineiro, J. P. Da Silva, L. Garcia-Rio, Cooperative Assembly of Discrete Stacked Aggregates Driven by Supramolecular Host-Guest Complexation, J. Org. Chem., 2013, 78, 9113–9119.

    Article  CAS  PubMed  Google Scholar 

  94. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, 1740–1741 10.1039/b105159h.

    Google Scholar 

  95. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminf., 2012, 4, 17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda Heyne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heyne, B. Self-assembly of organic dyes in supramolecular aggregates. Photochem Photobiol Sci 15, 1103–1114 (2016). https://doi.org/10.1039/c6pp00221h

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00221h

Navigation