Issue 22, 2015

Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR

Abstract

Despite the fact that cobalt based catalysts are used at the industrial scale for Fischer–Tropsch synthesis, it is not yet clear which cobalt metallic phase is actually at work under operando conditions and what is its state of dispersion. As it turns out, the different phases of metallic cobalt, fcc and hcp, give rise to distinct ferromagnetic nuclear magnetic resonance. Furthermore, within one Co metal particle, the occurrence of several ferromagnetic domains of limited sizes can be evidenced by the specific resonance of Co in multi-domain particles. Consequently, by ferromagnetic NMR, one can follow quantitatively the sintering and phase transitions of dispersed Co metal particles in supported catalysts under near operando conditions. The minimal size probed by ferromagnetic Co NMR is not precisely known but is considered to be in the order of 10 nm for supported Co particles at room temperature and increases to about 35 nm at 850 K. Here, in Co metal Fischer–Tropsch synthesis catalysts supported on β-SiC, the resonances of the fcc multi-domain, fcc single-domain and hcp Co were clearly distinguished. A careful rationalization of their frequency and width dependence on temperature allowed a quantitative analysis of the spectra in the temperature range of interest, thus reflecting the state of the catalysts under near operando conditions that is without the uncertainty associated with prior quenching. The allotropic transition temperature was found to start at 600–650 K, which is about 50 K below the bulk transition temperature. The phase transition was fully reversible and a significant part of the hcp phase was found to be stable up to 850 K. This anomalous behavior that was observed without quenching might prove to be crucial to understand and model active species not only in catalysts but also in battery materials.

Graphical abstract: Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2014
Accepted
30 Apr 2015
First published
06 May 2015

Phys. Chem. Chem. Phys., 2015,17, 14598-14604

Author version available

Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR

A. S. Andreev, J. d'Espinose de Lacaillerie, O. B. Lapina and A. Gerashenko, Phys. Chem. Chem. Phys., 2015, 17, 14598 DOI: 10.1039/C4CP05327C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements