Skip to main content
Log in

Chlorin e6 fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Further development of boron neutron capture therapy (BNCT) requires new neutronsensitizers with improved ability to deliver 10B isotopes in cancer cells. Conjugation of boron nanoparticles with porphyrin derivatives is an attractive and recognized strategy to solve this task. We report on breakthroughs in the structural optimization of conjugates of chlorin e6 derivative with cobalt-bis(dicarbollide) nanoparticles resulting in the creation of dimethyl ester 13-carbomoylchlorin e6 [N-hexylamine-N′-ethoxyethoxy]-cobalt-bis(dicarbollide) (conjugate 1). Conjugate 1 is able to accumulate quickly and efficiently (distribution factor of 80) in cancer cells, thus delivering more than 109 boron atoms per cell when its extracellular concentration is more than 1 μmol L−1. Also 1 is an active photosensitizer and is phototoxic towards human lung adenocarcinoma A549 cells at 80 nmol L−1 (50% cell death). Photoinduced cytotoxicity of 1 is associated with lipid peroxidation, lysosome rupture and protease activity enhancement. Conjugate 1 fluoresces in the red region (670 nm), which is useful to monitor its accumulation and distribution in vivo. It is not toxic to cells without activation by neutrons or photons. Structural features that improve the functional properties of 1 are discussed. The properties of 1 warrant its preclinical evaluation as a multifunctional agent for BNCT, photodynamic therapy and fluorescent tumor diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

Average cytoplasmic concentration

ATP:

Adenosine triphosphate

BC11:

Lipid peroxidation sensor BODIPY® 581/591 C11

BNCT:

Boron-neutron capture therapy

DNA:

Deoxyribonucleic acid

FWHM:

A full width at the half of maximum of the fluorescence spectrum

PDT:

Photodynamic therapy

RNA:

Ribonucleic acid

TOG:

Transferrin conjugated with Oregon Green 488

Cex:

Concentration of conjugate in cellular extract

CACC:

Average cytoplasmic concentration of conjugate

K:

Maximal ratio of CACC to extracellular concentration of conjugate

LD90:

Conjugate concentration that provides 90% photoinduced cell death

LD50:

Conjugate concentration that provides 50% photoinduced cell death

Nc:

Number of cells

Tup:

Time for 50% uptake of a conjugate in cells

Tef:

Time for 50% efflux of a conjugate from cells

R:

Ratio of the integrated fluorescence intensity of the studied conjugate in the examined solution to the intensity of this conjugate in 1% Cremophor solution

Vex:

Extract volume

Vcyt:

Cytoplasm volume of a cell

Φ(1O2):

Quantum yield of singlet oxygen generation

λf:

Maximum of fluorescence emission

References

  1. R. F. Barth, M. G. Vicente, O. K. Harling, W. S. Kiger 3rd, K. J. Riley, P. J. Binns, F. M. Wagner, M. Suzuki, T. Aihara, I. Kato, S. Kawabata, Radiat. Oncol., 2012, 7, 146.

    Article  PubMed  PubMed Central  Google Scholar 

  2. J. W. Hopewell, T. Gorlia, L. Pellettieri, V. Giusti, B. H-Stenstam, K. Sköld, Appl. Radiat. Isot., 2011, 69, 1737.

    Article  CAS  PubMed  Google Scholar 

  3. S. Kawabata, S. Miyatake, R. Hiramatsu, Y. Hirota, S. Miyata, Y. Takekita, T. Kuroiwa, M. Kirihata, Y. Sakurai, A. Maruhashi, K. Ono, Appl. Radiat. Isot., 2011, 69, 1796.

    Article  CAS  PubMed  Google Scholar 

  4. L. Kankaanranta, T. Seppälä, H. Koivunoro, K. Saarilahti, T. Atula, J. Collan, E. Salli, M. Kortesniemi, J. Uusi-Simola, P. Välimäki, A. Mäkitie, M. Seppänen, H. Minn, H. Revitzer, M. Kouri, P. Kotiluoto, T. Seren, I. Auterinen, S. Savolainen, H. Joensuu, Int. J. Radiat. Oncol., Biol., Phys., 2012, 82, e67.

    Article  PubMed  Google Scholar 

  5. P. R. Menéndez, B. M. Roth, M. D. Pereira, M. R. Casal, S. J. González, D. B. Feld, G. A. Santa Cruz, J. Kessler, J. Longhino, H. Blaumann, R. Jiménez Rebagliati, O. A. Calzetta Larrieu, C. Fernández, S. I. Nievas, S. J. Liberman, Appl. Radiat. Isot., 2009, 67, S50.

    Article  PubMed  Google Scholar 

  6. I. B. Sivaev, V. V. Bregadze, Eur. J. Inorg. Chem., 2009, 11, 1433.

    Article  Google Scholar 

  7. T. Kobayashi, K. Kanda, Radiat. Res., 1982, 91, 77.

    Article  CAS  PubMed  Google Scholar 

  8. H. Nakamura, N. Ueda, H. S. Ban, M. Ueno, S. Tachikawa, Org. Biomol. Chem., 2012, 10, 1374.

    Article  CAS  PubMed  Google Scholar 

  9. V. Bregadze, A. Semioshkin, I. Sivaev, Appl. Radiat. Isot., 2011, 69, 1774.

    Article  CAS  PubMed  Google Scholar 

  10. A. E. O’Connor, W. M. Gallagher, A. T. Byrne, Photochem. Photobiol., 2009, 85, 1053.

    Article  PubMed  Google Scholar 

  11. M. A. Grin, R. A. Titeev, D. I. Brittal, O. V. Ulybina, A. G. Tsiprovskiy, M. Ya. Berzina, I. A. Lobanova, I. B. Sivaev, V. I. Bregadze, A. F. Mironov, Mendeleev Commun., 2011, 21, 84.

    Article  CAS  Google Scholar 

  12. A. V. Efremenko, A. A. Ignatova, A. A. Borsheva, M. A. Grin, V. I. Bregadze, I. B. Sivaev, A. F. Mironov, A. V. Feofanov, Photochem. Photobiol. Sci., 2012, 11, 645.

    Article  CAS  PubMed  Google Scholar 

  13. A. Blum, L. I. Grossweiner, Photochem. Photobiol., 1985, 41, 27.

    Article  CAS  PubMed  Google Scholar 

  14. E. Gandin, Y. Lion, A. Van de Vorst, Photochem. Photobiol., 1983, 37, 271.

    Article  CAS  Google Scholar 

  15. A. Feofanov, A. Grichine, T. Karmakova, A. Pljutinskaya, V. Lebedeva, A. Filyasova, R. Yakubovskaya, A. Mironov, M. Egret-Charlier, P. Vigny, Photochem. Photobiol., 2002, 74, 633.

    Article  Google Scholar 

  16. W. Bors, M. Saran, E. Lengfelder, C. Michel, C. Fuchs, C. Frenzel, Photochem. Photobiol., 1978, 28, 629.

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Ignatova, A. S. Maslova, M. P. Kirpichnikov, A. V. Feofanov, Russ. J. Bioorg. Chem., 2009, 35, 746–751.

    Article  CAS  Google Scholar 

  18. A. Feofanov, S. Charonov, F. Fleury, I. Kudelina, I. Nabiev, Biophys. J., 1997, 73, 3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Grichine, A. Feofanov, T. Karmakova, N. Kazachkina, E. Pecherskih, R. Yakubovskaya, A. Mironov, M. Egret-Charlier, P. Vigny, Photochem. Photobiol., 2001, 73, 267.

    Article  CAS  PubMed  Google Scholar 

  20. A. V. Feofanov, A. I. Nazarova, T. A. Karmakova, A. D. Pliutinskaia, A. I. Grishin, R. I. Yakubovskaya, V. S. Lebedeva, R. D. Ruziev, A. F. Mironov, J. C. Maurizot, P. Vigny, Russ. J. Bioorg. Chem., 2004, 30, 374.

    Article  CAS  Google Scholar 

  21. A. V. Efremenko, A. A. Ignatova, M. A. Grin, A. F. Mironov, V. I. Bregadze, I. B. Sivaev and A. V. Feofanov, Confocal microscopy and spectral imaging technique: contribution to the development of neutron sensitizers for anticancer BNCT, in Current microscopy contributions to advances in science and technology, ed. A. Méndez-Vilas, Formatex Research Center, Badajoz, 2012, pp. 84–90.

    Google Scholar 

  22. A. Feofanov, G. Sharonov, A. Grichine, T. Karmakova, A. Pljutinskaya, V. Lebedeva, R. Ruziyev, R. Yakubovskaya, A. Mironov, M. Refregier, J.-C. Maurizot, P. Vigny, Photochem. Photobiol., 2004, 79, 172.

    Article  CAS  PubMed  Google Scholar 

  23. M. Martin-Facklam, J. Burhenne, R. Ding, R. Fricker, G. Mikus, I. Walter-Sack, W. E. Haefeli, Br. J. Clin. Pharmacol., 2002, 53, 576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Nazarova, A. Ignatova, A. Feofanov, T. Karmakova, A. Pljutinskaya, O. Mass, M. Grin, R. Yakubovskaya, A. Mironov, J.-C. Maurizot, Photochem. Photobiol. Sci., 2007, 6, 1184.

    Article  CAS  PubMed  Google Scholar 

  25. E. S. Nyman, P. H. Hynninen, J. Photochem. Photobiol., 2004, 73, 1.

    Article  CAS  Google Scholar 

  26. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, ed. I. D. Johnson and M. T. Z. Spence, Life Technologies Corporation, 11th edn, 2010, ch. 12, pp. 495–524.

    Google Scholar 

  27. V. I. Bregadze, A. A. Semioshkin, J. N. Las’kova, M. Ya. Berzina, I. A. Lobanova, I. B. Sivaev, M. A. Grin, R. A. Titeev, D. I. Brittal, O. V. Ulybina, A. V. Chestnova, A. A. Ignatova, A. V. Feofanov, A. F. Mironov, Appl. Organomet. Chem., 2009, 23, 370.

    Article  CAS  Google Scholar 

  28. M. A. Grin, R. A. Titeev, D. I. Brittal, A. V. Chestnova, A. V. Feofanov, I. A. Lobanova, I. B. Sivaev, V. I. Bregadze, A. F. Mironov, Russ. Chem. Bull., 2010, 59, 219.

    Article  CAS  Google Scholar 

  29. G. J. Zhang, J. Yao, Biochim. Biophys. Acta, 1997, 1326, 75.

    Article  CAS  PubMed  Google Scholar 

  30. E. V. Filonenko, V. V. Sokolov, V. I. Chissov, E. A. Lukyanets, G. N. Vorozhtsov, Photodiagn. Photodyn. Ther., 2008, 5, 187.

    Article  Google Scholar 

  31. E. V. Kochneva, E. V. Filonenko, E. G. Vakulovskaya, E. G. Scherbakova, O. V. Seliverstov, N. A. Markichev, A. V. Reshetnickov, Photodiagn. Photodyn. Ther., 2010, 7, 258.

    Article  CAS  Google Scholar 

  32. T. Karmakova, A. Feofanov, A. Pankratov, N. Kazachkina, A. Nazarova, R. Yakubovskaya, V. Lebedeva, R. Ruziyev, A. Mironov, J. C. Maurizot, P. Vigny, J. Photochem. Photobiol., 2006, 82, 28.

    Article  CAS  Google Scholar 

  33. S. Kawabata, W. Yang, R. F. Barth, G. Wu, T. Huo, P. J. Binns, K. J. Riley, O. Ongayi, V. Gottumukkala, M. G. Vicente, J. Neuro-Oncol., 2011, 103, 175.

    Article  Google Scholar 

  34. M. I. Kurzhupov, V. A. Loshakov, E. V. Filonenko, A. M. Zaitsev and A. G. Khanmurzaeva, Voprosy Neirokhirurgii imeni N.N. Burdenko, 2012, 76 2, 50.

    CAS  Google Scholar 

  35. K. Roessler, A. Becherer, M. Donat, M. Cejna, I. Zachenhofer, Neurol. Res., 2012, 34, 314.

    Article  CAS  PubMed  Google Scholar 

  36. H. Kostron, Methods Mol. Biol., 2010, 635, 261.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Feofanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremenko, A.V., Ignatova, A.A., Grin, M.A. et al. Chlorin e6 fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells. Photochem Photobiol Sci 13, 92–102 (2014). https://doi.org/10.1039/c3pp50226k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50226k

Navigation