Skip to main content

Advertisement

Log in

Iron, oxidative stress and the example of solar ultraviolet A radiation

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Iron has outstanding biological importance as it is required for a wide variety of essential cellular processes and, as such, is a vital nutrient. The element holds this central position by virtue of its facile redox chemistry and the high affinity of both redox states (iron II and iron III) for oxygen. These same properties also render iron toxic when its redox-active chelatable ‘labile’ form exceeds the normal binding capacity of the cell. Indeed, in contrast to iron bound to proteins, the intracellular labile iron (LI) can be potentially toxic especially in the presence of reactive oxygen species (ROS), as it can lead to catalytic formation of oxygen-derived free radicals such as hydroxyl radical that ultimately overwhelm the cellular antioxidant defense mechanisms and lead to cell damage. While intracellular iron homeostasis and body iron balance are tightly regulated to minimise the presence of potentially toxic LI, under conditions of oxidative stress and certain pathologies, iron homeostasis is severely altered. This alteration manifests itself in several ways, one of which is an increase in the intracellular level of potentially harmful LI. For example acute exposure of skin cells to ultraviolet A (UVA, 320–400 nm), the oxidising component of sunlight provokes an immediate increase in the available pool of intracellular LI that appears to play a key role in the increased susceptibility of skin cells to UVA-mediated oxidative membrane damage and necrotic cell death. The main purpose of this overview is to bring together some of the new findings related to intracellular LI distribution and trafficking under physiological and patho-physiological conditions as well as to discuss mechanisms and consequences of oxidant-induced alterations in the intracellular pool of LI, as exemplified by UVA radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cairo, F. Bernuzzi, S. Recalcati, A precious metal: Iron, an essential nutrient for all cells, Genes Nutr., 2006, 1, 25–39

    CAS  PubMed  PubMed Central  Google Scholar 

  2. N. T. Le, D. R. Richardson, The role of iron in cell cycle progression and the proliferation of neoplastic cells, Biochim. Biophys. Acta, 2002, 1603, 31–46.

    CAS  PubMed  Google Scholar 

  3. D. R. Richardson, P. Ponka, The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells, Biochim. Biophys. Acta, 1997, 1331, 1–40.

    CAS  PubMed  Google Scholar 

  4. O. Kakhlon, Z. I. Cabantchik, The labile iron pool: Characterization, measurement and participation in cellular processes, Free Radical Biol. Med., 2002, 33, 1037–1046.

    CAS  Google Scholar 

  5. B. Halliwell, J. M. C. Gutteridge, Biologically relevant metal ion-dependent hydroxyl radical generation: An update, FEBS Lett., 1992, 307, 108–112.

    CAS  PubMed  Google Scholar 

  6. R. M. Tyrrell, The molecular and cellular pathology of solar ultraviolet radiation, Mol. Aspects Med., 1994, 15, 1–77.

    CAS  PubMed  Google Scholar 

  7. R. M. Tyrrell, Activation of mammalian gene expression by the UV component of sunlight-from models to reality, BioEssays, 1996, 18, 139–148.

    CAS  PubMed  Google Scholar 

  8. H. J. Danpure, R. M. Tyrrell, Oxygen dependence of near-UV (365 nm) lethality and the interaction of near-UV and X-rays in two mammalian cell lines, Photochem. Photobiol., 1976, 23, 171–177.

    CAS  PubMed  Google Scholar 

  9. R. M. Tyrrell, in Oxidative Stress: Oxidants and Antioxidants, ed. H. Sies, Academic Press, London, 1991, pp 57–83.

  10. C. Beauchamp, I. A. Fridovich, A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase, J. Biol. Chem., 1970, 245, 4641–4646.

    CAS  PubMed  Google Scholar 

  11. J. A. Badwey, M. L. Karnovsky, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem., 1980, 49, 695–726.

    CAS  PubMed  Google Scholar 

  12. A. Valencia, I. E. Kochevar, Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes, J. Invest. Dermatol., 2007, 128, 214–222.

    PubMed  Google Scholar 

  13. R. M. Tyrrell, M. Pidoux, Correlation between endogenous glutathione content and sensitivity of cultured human skin cells to radiation at defined wavelengths in the solar UV range, Photochem. Photobiol., 1988, 47, 405–412.

    CAS  PubMed  Google Scholar 

  14. C. Pourzand, R. D. Watkin, J. E. Brown, R. M. Tyrrell, Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 6751–6756.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. E. Kvam, A. Noel, S. Basu-Modak, R. M. Tyrrell, Cyclooxygenase dependent release of heme from microsomal hemeproteins correlates with induction of heme oxygenase 1 transcription in human fibroblasts, Free Radical Biol. Med., 1999, 26, 511–517.

    CAS  Google Scholar 

  16. R. M. Tyrrell, Solar ultraviolet A radiation: An oxidizing skin carcinogen that activates heme oxygenase-1, Antioxid. Redox Signal., 2004, 6, 835–840.

    CAS  PubMed  Google Scholar 

  17. G. F. Vile, R. M. Tyrrell, UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen, Free Radical Biol. Med., 1995, 18, 721–730.

    CAS  Google Scholar 

  18. R. M. Tyrrell, V. E. Reeve, Potential protection of skin by acute UVA irradiation-from cellular to animal models, Prog. Biophys. Mol. Biol., 2006, 92, 86–91.

    CAS  PubMed  Google Scholar 

  19. C. J. Bertling, F. Lin, A. W. Girotti, Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells, Photochem. Photobiol., 1996, 64, 137–142.

    CAS  PubMed  Google Scholar 

  20. G. T. Wondrak, M. K. Jacobson, E. L. Jacobson, Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection, Photochem. Photobiol. Sci., 2006, 5, 215–237.

    CAS  PubMed  Google Scholar 

  21. P. Morliere, A. Moysan, R. Santus, G. Huppe, J-C Maziere, L. Ertret, UVA-induced lipid peroxidation in cultured human fibroblasts, Biochim. Biophys. Acta, 1991, 1084, 261–268.

    CAS  PubMed  Google Scholar 

  22. K. Punnonen, C. T. Jansen, A. Puntala, M. Ahotoupa, Effects of ultraviolet A and B irradiation on lipid peroxidation and activity of the antioxidant enzymes in keratinocytes in culture, J. Invest. Dermatol., 1991, 96, 255–259.

    CAS  PubMed  Google Scholar 

  23. J. Dissemond, L. A. Schneider, P. Brenneisen, K. Briviba, J. Wenk, M. Wlaschek, K. Scharfetter-Kochanek, Protective and determining factors for the overall lipid peroxidation in ultraviolet A1-irradiated fibroblasts: in vitro and in vivo investigations, Br. J. Dermatol., 2003, 149, 341–349.

    CAS  PubMed  Google Scholar 

  24. S. D. Aust, L. A. Morehouse, C. E. Thomas, Role of metals in oxygen radical reactions, J. Free Radicals Biol. Med., 1985, 1, 3–25.

    CAS  Google Scholar 

  25. A. W. Girotti, Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms, J. Photochem. Photobiol., B, 2001, 63, 103–113.

    CAS  PubMed  Google Scholar 

  26. O. Reelfs, I. M. Eggleston, C. Pourzand, Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrug, Curr. Drug Metab., 2010, 11, 242–249.

    CAS  PubMed  Google Scholar 

  27. C. Pourzand, R. M. Tyrrell, Apoptosis, the role of oxidative stress and the example of solar ultraviolet radiation, Photochem. Photobiol., 1999, 70, 380–391.

    CAS  PubMed  Google Scholar 

  28. J. L. Zhong, A. Yiakouvaki, P. Holley, R. M. Tyrrell, C. Pourzand, Susceptibility of skin cells to UVA-induced necrotic cell death reflects the intracellular level of labile iron, J. Invest. Dermatol., 2004, 123, 771–780.

    CAS  PubMed  Google Scholar 

  29. K. Scharfetter-Kochanek, M. Wlaschek, P. Brenneisen, M. Scauen, R. Blaudschun, J. Wenk, UV-induced reactive oxygen species in photocarcinogenesis and photoaging, Biol. Chem., 1997, 378, 1247–1257.

    Google Scholar 

  30. M. Shayeghi, G. O. Latunde-Dada, J. S. Oakhill, A. H. Laftah, K. Takeuchi, N. Halliday, Y. Khan, A. Warley, F. E. McCann, R. C. Hider, D. M. Frazer, G. J. Anderson, C. D. Vulpe, R. J. Simpson, A. T. McKie, Identification of an intestinal heme transporter, Cell, 2005, 122, 789–801.

    CAS  PubMed  Google Scholar 

  31. N. C. Andrews, Molecular control of iron metabolism, Best Pract. Res. Clin. Haematol., 2005, 18, 159–169.

    CAS  PubMed  Google Scholar 

  32. C. W. Trenam, D. R. Blake, C. J. Morris, Skin inflammation: Reactive oxygen species and the role of iron, J. Invest. Dermatol., 1992, 99, 675–682.

    CAS  PubMed  Google Scholar 

  33. L. C. Kuhn, Molecular regulation of iron proteins, Bailliere’s Clin. Haematol., 1994, 7, 763–785.

    CAS  Google Scholar 

  34. R. Crichton, B. Danielson and P. Geisser, in Iron therapy with special emphasis on intravenous administration (4th Edition), UNI-MED, Bremen, Germany, 2008, pp. 14–16.

    Google Scholar 

  35. T. Ganz, Molecular control of iron transport, J. Am. Soc. Nephrol., 2007, 18, 394–400.

    CAS  PubMed  Google Scholar 

  36. S. Epsztejn, O. Kakhlon, H. Glickstein, W. Breuer, Z. I. Cabantchik, Fluorescence analysis of the labile iron pool of mammalian cells, Anal. Biochem., 1997, 248, 31–40.

    CAS  PubMed  Google Scholar 

  37. M. Kruszewski, Labile iron pool: The main determinant of cellular response to oxidative stress, Mut. Res., 2003, 29, 81–92.

    Google Scholar 

  38. B. P. Espósito, S. Epsztejn, W. Breuer, Z. I. Cabantchik, A review of fluorescence methods for assessing labile iron in cells and biological fluids, Anal. Biochem., 2002, 304, 1–18.

    PubMed  Google Scholar 

  39. C. Hershko, G. Graham, G. W. Bates, E. A. Rachmilewitz, Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity, Br. J. Haematol., 1978, 40, 255–263.

    CAS  PubMed  Google Scholar 

  40. T. Ganz, E. Nemeth, Hepcidin and disorders of iron metabolism, Annu. Rev. Med., 2011, 62, 347–360.

    CAS  PubMed  Google Scholar 

  41. E. Nemeth, M. S. Tuttle, J. Powelson, M. B. Vaughn, A. Donovan, D. M. Ward, T. Ganz, J. Kaplan, Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization, Science, 2004, 306, 2090–2093.

    CAS  PubMed  Google Scholar 

  42. B. A. Syed, P. J. Sargent, S. Farnaud, R. W. Evans, An overview of molecular aspects of iron metabolism, Hemoglobin, 2006, 30, 69–80.

    CAS  PubMed  Google Scholar 

  43. L. Klautz, E. Nemeth, Novel tools for the evaluation of iron metabolism, Haematologica, 2010, 95, 1989–1991.

    Google Scholar 

  44. M. W. Hentze, L. C. Kuhn, Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 8175–8182.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. N. C. Andrews, Forging a field: the golden age of iron biology, Blood, 2008, 112, 219–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. I. De Domenico, D. McVey Ward, J. Kaplan, Regulation of iron acquisition and storage: consequences for iron-linked disorders, Nat. Rev. Mol. Cell Biol., 2008, 9, 72–81.

    PubMed  Google Scholar 

  47. Z. D. Liu, R. C. Hider, Design of clinically useful iron(III)-selective chelators., Med. Res. Rev., 2002, 22, 26–64.

    CAS  PubMed  Google Scholar 

  48. B. Halliwell and J. M. C. Gutteridge, Free radicals, ageing, and disease, in Free Radicals in Biology and Medicine, second edition, Clarendon, Oxford, 1989, pp 416–493.

    Google Scholar 

  49. H. De Groot, Reactive oxygen species in tissue injury., Hepato-Gastroenterology, 1994, 41, 328–332.

    PubMed  Google Scholar 

  50. S. J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med., 1995, 18, 321–336.

    CAS  Google Scholar 

  51. M. Tenopoulo, P. T. Doulis, A. Barbouti, U. Brunk, D. Galaris, Role of compartmentalized redox active iron in hydrogen peroxide-induced DNA damage and apoptosis, Biochem. J., 2005, 387, 703–710.

    Google Scholar 

  52. C. Pourzand, O. Reelfs, R. M. Tyrrell, Approaches to define the involvement of reactive oxygen species and iron in ultraviolet-A inducible gene expression, Methods Mol. Biol., 2000, 99, 257–276.

    CAS  PubMed  Google Scholar 

  53. G. Cairo, A. Pietrangelo, Iron regulatory proteins in pathobiology., Biochem. J., 2000, 352, 241–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. B. G. Rosser, G. J. Gores, Liver cell necrosis: cellular mechanisms and clinical implications., Gastroenterology, 1995, 108, 252–275.

    CAS  PubMed  Google Scholar 

  55. M. S. Sussman, G. B. Bulkley, Oxygen-derived free radicals in reperfusion injury, Methods Enzymol., 1990, 186, 711–722.

    CAS  PubMed  Google Scholar 

  56. H. De Groot, M. Brecht, Reoxygenation injury in rat hepatocytes: mediation by O2-/H2O2 liberated by sources other than xanthine oxidase, Biol. Chem. Hoppe-Seyler, 1991, 372, 35–41.

    PubMed  Google Scholar 

  57. L. Tacchini, S. Recalcati, A. Bernelli-Zazzera, G. Cairo, Induction of ferritin synthesis in ischemic-reperfused rat liver: analysis of the molecular mechanisms, Gastroenterology, 1997, 113, 946–953.

    CAS  PubMed  Google Scholar 

  58. N. C. Andrews, Disorders of iron metabolism, N. Engl. J. Med., 1999, 341, 1986–1995.

    CAS  PubMed  Google Scholar 

  59. A. Gaeta, R. C. Hider, The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy, Br. J. Pharmacol., 2009, 146, 1041–1059.

    Google Scholar 

  60. S. Kalinowski, D. R. Richardson, The evolution of iron chelators for the treatment of iron overload disease and cancer, Pharmacol. Rev., 2005, 57, 547–583.

    CAS  PubMed  Google Scholar 

  61. M. Molina-Holgado, R. C. Hider, A. Gaeta, R. Williams, P. Francis, Metals ions and neurodegeneration, BioMetals, 2007, 20, 639–654.

    CAS  PubMed  Google Scholar 

  62. B. R. Bacon, R. S. Britton, The pathology of hepatic iron overload: a free radical-mediated process?, Hepatology, 1990, 11, 127–137.

    CAS  PubMed  Google Scholar 

  63. J. P. Kehrer, The Haber-Weiss reaction and mechanisms of toxicity, Toxicology, 2000, 149, 43–50.

    CAS  PubMed  Google Scholar 

  64. K. V. Kowdley, Iron, hemochromatosis, and hepatocellular carcinoma, Gastroenterology, 2004, 127, S79–S86.

    CAS  PubMed  Google Scholar 

  65. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem.-Biol. Interact., 2006, 160, 1–40.

    CAS  PubMed  Google Scholar 

  66. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, Free radicals and antioxidants in normal physiological functions and human diseases, Int. J. Biochem. Cell Biol., 2007, 39, 44–84.

    CAS  PubMed  Google Scholar 

  67. C. A. Swanson, Iron intake and regulation: implications for iron deficiency and iron overload, Alcohol, 2003, 30, 99–102.

    CAS  PubMed  Google Scholar 

  68. G. J. Brewer, Risks of copper and iron toxicity during aging in humans, Chem. Res. Toxicol., 2010, 23, 319–326.

    CAS  PubMed  Google Scholar 

  69. Y. Kongho, T. Ohtake, K. Ikuta, Y. Suzuki, Y. Hosoki, H. Saito, Iron accumulation in alcoholic liver diseases, Alcohol.: Clin. Exp. Res., 2005, 29, S189–S193.

    Google Scholar 

  70. D. R. Petersen, Alcohol, iron-associated oxidative stress, and cancer, Alcohol, 2005, 35, 243–249.

    CAS  PubMed  Google Scholar 

  71. N. Imeryuz, V. Tahan, A. Sonsuz, F. Eren, S. Uraz, M Yuksel, Iron preloading aggravates nutritional steatohepatitis in rats by increasing apopotic cell death, J. Hepatol., 2007, 47, 851–859.

    CAS  PubMed  Google Scholar 

  72. S. Toyokuni, Iron-induced carcinogenesis: the role of redox regulation, Free Radical Biol. Med., 1996, 20, 553–566.

    CAS  Google Scholar 

  73. D. R. Richardson, D. S. Kalinowski, S. Lau, P. J. Jansson, D. B. Lovejoy, Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents, Biochim. Biophys. Acta, 2009, 1790, 702–717.

    CAS  PubMed  Google Scholar 

  74. H. W. Hann, M. W. Stahlhut, B. S. Blumberg, Iron nutrition and tumor growth: decreased tumor growth in iron-deficient mice, Cancer Res., 1988, 48, 4168–4170.

    CAS  PubMed  Google Scholar 

  75. L. Molin, P. O. Wester, Iron content in normal and psoriatic epidermis, Acta Derm. Venereol., 1973, 53, 473–476.

    CAS  PubMed  Google Scholar 

  76. Z. Ackerman, M. Seidenbaum, E. Loewenthal, A. Rubinow, Overload of iron in the skin of patients with varicose ulcers. Possible contributing role of iron accumulation in progression of the disease, Arch. Dermatol., 1988, 124, 1376–1378.

    CAS  PubMed  Google Scholar 

  77. T. J. David, F. E. Wells, T. C. Sharpe, A. C. Gibbs, J. Devlin, Serum levels of trace metals in children with atopic eczema, Br. J. Dermatol., 1990, 122, 485–489.

    CAS  PubMed  Google Scholar 

  78. J. L. Sullivan, Iron and the sex difference in heart disease risk, Lancet, 1981, 317, 1293–1294.

    Google Scholar 

  79. J. Jian, E. Pelle, X. Huang, Iron and menopause: does increased iron affect the health of postmenopausal women?, Antioxid. Redox Signaling, 2009, 11, 2939–2943.

    CAS  Google Scholar 

  80. W. Y. Ong, B. Halliwell, Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage?, Ann. N. Y. Acad. Sci., 2004, 1012, 51–64.

    CAS  PubMed  Google Scholar 

  81. M. W. Hentze, T. A. Rouault, J. B. Harford, R. D. Klausner, Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction, Science, 1989, 244, 357–359.

    CAS  PubMed  Google Scholar 

  82. E. W. Müllner, S. Rothenberger, A. M. Müller, L. C. Kühn, In vivo and in vitro modulation of the mRNA-binding activity of iron-regulatory factor. Tissue distribution and effects of cell proliferation, iron levels and redox state, Eur. J. Biochem., 1992, 208, 597–605.

    PubMed  Google Scholar 

  83. E. A. Martins, R. L. Robalinho, R. Meneghini, Oxidative stress induces activation of a cytosolic protein responsible for control of iron uptake, Arch. Biochem. Biophys., 1995, 316, 128–134.

    CAS  PubMed  Google Scholar 

  84. K. Pantopoulos, M. W. Hentze, Rapid responses to oxidative stress mediated by iron regulatory protein, EMBO J., 1995, 14, 2917–2924.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. G. Cairo, E. Castrusini, G. Minotti, A. Bernelli-Zazzera, Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory prtein activity: A protective stratagen against oxidative injury, FASEB J., 1996, 10, 1326–1335.

    CAS  PubMed  Google Scholar 

  86. G. Cairo, L. Tacchini, G. Pogliaghi, E. Anzon, A. Tomasi, A. Bernelli-Zazzera, Induction of ferritin synthesis by oxidative stress. Transcriptional and post-transcriptional regulation by expansion of the ‘free’ iron pool, J. Biol. Chem., 1995, 270, 700–703.

    CAS  PubMed  Google Scholar 

  87. A. Yiakouvaki, J. Savovic, A. Al-Qenaei, J. Dowden, C. Pourzand, Caged-Iron Chelators a novel approach towards protecting skin cells against UVA-induced necrotic cell death, J. Invest. Dermatol., 2006, 126, 2287–2295.

    CAS  PubMed  Google Scholar 

  88. S. Basu-Modak, D. Ali, M. Gordon, T. Polte, A. Yiakouvaki, C. Pourzand, C. Rice-Evans, R. M. Tyrrell, Suppression of UVA-mediated release of labile iron by epicathecin-A link to lysosomal protection, Free Radical Biol. Med., 2006, 41, 1197–1204.

    CAS  Google Scholar 

  89. W. Breuer, M. Shvartsman, Z. I. Cabantchik, Intracellular labile iron, Int. J. Biochem. Cell Biol., 2008, 40, 350–354.

    CAS  PubMed  Google Scholar 

  90. S. M. Keyse, R. M. Tyrrell, Heme oxygenase is the major 32 kDA stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite., Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 99–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. C. Hanselmann, C. Mauch, S. Werner, Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis?, Biochem. J., 2001, 353, 459–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. R. M. Tyrrell, in Heme-Oxygenase - The Elegant Orchestration of its Products in Medicine, ed. L. E. Otterbein and B. S. Zucherbraun, Nova, Science Publishers Inc, New York, 2005, pp. 333–350.

  93. E. Kvam, V. Hejmadi, S. Ryter, C. Pourzand, R. M. Tyrrell, Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet A radiation that depends on release of iron from heme, Free Radical Biol. Med., 2000, 28, 1191–1196.

    CAS  Google Scholar 

  94. G. F. Vile, R. M. Tyrrell, Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin, J. Biol. Chem., 1993, 268, 14678–14681.

    CAS  PubMed  Google Scholar 

  95. G. F. Vile, S. Basu-Modak, C. Waltner, R. M. Tyrrell, Heme-oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 2607–2610.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. F. Lin, A. W. Girotti, Elevated ferritin production, iron containment, and oxidant resistance in hemin-treated leukemia cells, Biochem. Pharmacol., 1997, 14, 1361–1363.

    Google Scholar 

  97. V. E. Reeve, D. Domanski, Refractoriness of UVA-induced protection from photo-immunosuppression correlates with heme oxygenase response to repeated UVA exposure, Photochem. Photobiol., 2002, 76, 401–405.

    CAS  PubMed  Google Scholar 

  98. W. K. McCourbey, M. D. Maines, The structure, organisation and differential expression of the gene encoding rat heme-oxygenase-2, Gene, 1994, 139, 155–161.

    Google Scholar 

  99. A. Noël, R. M. Tyrrell, Development of refractoriness of induced human heme oxygenase-1 gene expression to reinduction by UVA irradiation and hemin, Photochem. Photobiol., 1997, 66, 456–463.

    PubMed  Google Scholar 

  100. S. Fakih, M. Podinovskaia, X. Kong, H. L. Collins, U. E. Schaible, R. C. Hider, Targeting the lysosome: Fluorescent iron (III) chelators to selectively monitor endosomal/lysosomal labile iron pools, J. Med. Chem., 2008, 51, 4539–4552.

    CAS  PubMed  Google Scholar 

  101. M. Tenopoulou, T. Kurz, P. T. Doulias, D. Galaris, U. T. Brunk, Does the calcein-AM method assay the total cellular ‘labile iron pool’ or only a fraction of it?, Biochem. J., 2007, 403, 261–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Y. Ma, H. de Groot, Z. Liu, R. C. Hider, F. Petrat, Chelation and determination of labile iron in primary hepatocytes by pyridinone fluorescent probes, Biochem. J., 2006, 395, 49–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Y. Ma, W. Luo, P. J. Quinn, Z. Liu, R. C. Hider, Design, Synthesis, Physicochemical properties and evaluation of novel iron chelators with fluorescent sensors, J. Med. Chem., 2004, 47, 6349–6362.

    CAS  PubMed  Google Scholar 

  104. F. Petrat, U U. Rauen, H. de Groot, Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK, Hepatology, 1999, 29, 1171–1179.

    CAS  PubMed  Google Scholar 

  105. F. Petrat, H. de Groot, U. Rauen, Determination of the chelatable iron pool of single intact cells by laser scanning microscopy, Arch. Biochem. Biophys., 2000, 376, 74–81.

    CAS  PubMed  Google Scholar 

  106. F. Petrat, H. de Groot, U. Rauen, Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells, Biochem. J., 2001, 356, 61–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. F. Petrat, D. Weisheit, M. Lensen, H. de Groot, R. Sustmann, U. Rauen, Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor, Biochem. J., 2002, 362, 137–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. O. Reelfs, R. M. Tyrrell, C. Pourzand, Ultraviolet A radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts, J. Invest. Dermatol., 2004, 122, 1440–1447.

    CAS  PubMed  Google Scholar 

  109. M. Shvartsman, E. Fibach, Z. I. Cabantchik, Transferrin iron routing to the cytosol and mitochondria as studied by live and real-time fluorescence, Biochem. J., 2010, 429, 185–193.

    CAS  PubMed  Google Scholar 

  110. W. Breuer, M. Shvartsman, Z. I. Cabantchik, Intracellular labile iron, Int. J. Biochem. Cell Biol., 2008, 40, 350–354.

    CAS  PubMed  Google Scholar 

  111. Y. Yu, Z. Kovacevic, D. R. Richardson, Tuning cell cycle regulation with an iron key, Cell Cycle, 2007, 6, 1982–1994.

    CAS  PubMed  Google Scholar 

  112. R. S. Ohgami, D. R. Campagna, E. L. Greer, B. Antiochos, A. McDonald, J. Chen, J. J. Sharp, Y. Fujiwara, J. E. Barker, M. D. Fleming, Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells, Nat. Genet., 2005, 37, 1264–1269.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. H. Gunshin, B. Mackenzie, U. V. Berger, Y. Gunshin, M. F. Romero, W. F. Boron, S. Nussberger, J. L. Gollan, M. A. Hediger, Cloning and characterization of a mammalian proton-coupled metal-ion transporter, Nature, 1997, 388, 482–488.

    CAS  PubMed  Google Scholar 

  114. R. S. Eisenstein, Iron regulatory proteins and the molecular control of mammalian iron metabolism, Annu. Rev. Nutr., 2000, 20, 627–662.

    CAS  PubMed  Google Scholar 

  115. P. Arosio, S. Levi, Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage, Biochim. Biophys. Acta, 2010, 1800, 783–792.

    CAS  PubMed  Google Scholar 

  116. Y. Yu, J. Wong, D. B. Lovejoy, D. S. Kalinowski, D. R. Richardson, Chelators at the cancer coalface: desferrioxamine to Triapine and beyond, Clin. Cancer Res., 2006, 12, 6876–6883.

    CAS  PubMed  Google Scholar 

  117. D. Darshan, L. Vanoaica, L. Richman, F. Beerman, L. C. Kühn, Conditional deletion of ferritin H in mice induces loss of iron storage and liver damage, Hepatology, 2009, 50, 852–860.

    CAS  PubMed  Google Scholar 

  118. S. Omiya, S. Hikoso, Y. Imanishi, A. Saito, O. Yamaguchi, T. Takeda, I. Mizote, T. Oka, M. Taneike, Y. Nakano, Y. Matsumura, K. Nishida, Y. Sawa, M. Hori, K. Otsu, Downregulation of ferritin heavy chain decreases labile iron pool, oxidative stress and cell death in cardiomyocytes, J. Mol. Cell. Cardiol., 2009, 46, 59–66.

    CAS  PubMed  Google Scholar 

  119. H. Shi, K. Z. Bencze, T. L. Stemmler, C. C. Philpott, A cytosolic iron chaperone that delivers iron to ferritin, Science, 2008, 320, 1207–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. H. Lange, G. Kispal, R. Lill, Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria, J. Biol. Chem., 1999, 274, 18989–18996.

    CAS  PubMed  Google Scholar 

  121. L. M. Garrick, K. Gniecko, J. E. Hoke, A. al-Nakeeb, P. Ponka, M. D. Garrick, Ferric-salicylaldehyde isonicotinoyl hydrazone, a synthetic iron chelate, alleviates defective iron utilization by reticulocytes of the Belgrade rat, J. Cell. Physiol., 1991, 146, 460–465.

    CAS  PubMed  Google Scholar 

  122. A. S. Zhang, A. D. Sheftel, P. Ponka, Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria, Blood, 2005, 105, 368–375.

    CAS  PubMed  Google Scholar 

  123. A. D. Sheftel, A. S. Zhang, C. Brown, O. S. Shirihai, P. Ponka, Direct intraorganellar transfer of iron from endosomes to mitochondria, Blood, 2007, 110, 125–132.

    CAS  PubMed  Google Scholar 

  124. G. C. Shaw, J. J. Cope, I. Li, K. Corson, C. Hersey, G. E. Ackermann, B. Gwynn, A. J. Lambert, R. A. Wingert, D. Traver, N. S. Trede, B. A. Barut, Y. Zhou, E. Minet, A. Donovan, A. Brownlie, R. Balzan, M. J. Weiss, L. I. Peters, J. Kaplan, L. I. Zon, B. H. Paw, Mitoferrin is essential for erythroid iron assimilation, Nature, 2006, 440, 96–100.

    CAS  PubMed  Google Scholar 

  125. W. Chen, H. A. Dailey, B. H. Paw, Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme synthesis, Blood, 2010, 116, 628–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. P. Ponka, Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells, Blood, 1997, 89, 1–25.

    CAS  PubMed  Google Scholar 

  127. J. Borova, P. Ponka, J. Neuwirt, Study of intracellular iron distribution in rabbit reticulocytes with normal and inhibited heme synthesis, Biochim. Biophys. Acta, 1973, 320, 143–156.

    CAS  PubMed  Google Scholar 

  128. P. Ponka, A. Wilczynska, H. M. Schulman, Iron utilization in rabbit reticulocytes: a study using succinylacetone as an inhibitor of heme synthesis, Biochim. Biophys. Acta, Mol. Cell Res., 1982, 720, 96–105.

    CAS  Google Scholar 

  129. D. R. Richardson, P. Ponka, D. Vyoral, Distribution of iron in reticulocytes after inhibition of heme synthesis with succinylacetone: examination of the intermediates involved in iron metabolism., Blood, 1996, 87, 3477–3488.

    CAS  PubMed  Google Scholar 

  130. A. May, E. Fitzsimons, Sideroblastic anaemia, Bailliere’s Clin. Haematol., 1994, 7, 851–879.

    CAS  Google Scholar 

  131. M. L. Adams, I. Ostapiuk, J. A. Grasso, The effects of inhibition of heme synthesis on the intracellular localization of iron in rat reticulocytes, Biochim. Biophys. Acta, Mol. Cell Res., 1989, 1012, 243–253.

    CAS  Google Scholar 

  132. T. K. Rostovtseva, S. M. Bezrukov, ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis, Biophys. J., 1998, 74, 2365–2373.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. S. Levi, E. Rovida, The role of iron in mitochondria function, Biochim. Biophys. Acta, 2009, 1790, 629–636.

    CAS  PubMed  Google Scholar 

  134. F. Y. Li, B. Leibiger, I. Leibiger, C. Larsson, Characerisation of a putative murine mitochondrial transporter homology of hMRS3/4, Mamm. Genome, 2002, 13, 20–23.

    CAS  PubMed  Google Scholar 

  135. C. Pourzand, O. Reelfs, E. Kvam, R. M. Tyrrell, IRP can determine the effectiveness of d-aminolevulinic acid in inducing protoporphyrin IX (PPIX) in primary human skin fibroblasts, J. Invest. Dermatol., 1999, 112, 101–107.

    Google Scholar 

  136. A. T. McKie, P. Marciani, A. Relfs, K. Brennan, K. Wehr, D. Barrow, S. Miret, T. J. Bomford, T. J. Peters, F. Farzaneh, M. A. Hediger, M. W. Hentze, R. J. Simpson, A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation, Mol. Cell, 2000, 5, 299–309.

    CAS  PubMed  Google Scholar 

  137. R. Lill, Functions and biogenesis of iron sulfur proteins, Nature, 2009, 460, 831–888.

    CAS  PubMed  Google Scholar 

  138. I. J. Schultz, C. Chen, B. H. Paw, I Hamza, Iron and porphyrin trafficking in heme biogenesis, J. Biol. Chem., 2010, 285, 26753–26759.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. U. Rauen, A. Springer, D. Weisheit, F. Petrat, H. G. Korth, H. de Groot, R. Sustmann, Assessment of chelatable mitochondrial iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities, ChemBioChem, 2007, 8, 341–352.

    CAS  PubMed  Google Scholar 

  140. B. Sturm, U. Bistrich, M. Schranzhofer, J. P. Sarsero, U. Rauen, B. Scheiber-Mojdehkar, H. de Groot, P. Ioannou, F. Petrat, Friedreich’s ataxia, no changes in mitochondrial labile iron in human lymphoblasts and fibroblasts: a decrease in antioxidative capacity?, J. Biol. Chem., 2005, 280, 6701–6708.

    CAS  PubMed  Google Scholar 

  141. T. Kurz, A. Terman, B. Gustafsson, U. T. Brunk, Lysosomes and oxidative stress in aging and apoptosis, Biochim. Biophys. Acta, 2008, 1780, 1291–1303.

    CAS  PubMed  Google Scholar 

  142. Z. Yu, H. L. Persson, J. W. Eaton, U. T. Brunk, Intralysosomal iron: a major determinant of oxidant-induced cell death, Free Radical Biol. Med., 2003, 34, 1243–1252.

    CAS  Google Scholar 

  143. K. Kislyov, J. J. Jennings Jr, Y. Rbaibi, C. T. Chu, Autophagy, mitochondria and cell death in lysosomal storage diseases, Autophagy, 2007, 3, 259–262.

    Google Scholar 

  144. C. Settembre, A. Fraldi, L. Jahreiss, C. Spampanato, C. Venturi, D. Medina, R. D. Pablo, C. Tacchetti, D. C. Rubinsztein, A. Ballabio, A block of autophagy in lysosomal storage disorders, Hum. Mol. Genet., 2007, 17, 119–129.

    PubMed  Google Scholar 

  145. H. Glickstein, R. B. El, G. Link, W. Breuer, A. M. Konijn, C. Hershko, H. Nick, Z. I. Cabantchik, Action of chelators in iron-loaded cardiac cells: Accessibility to intracellular labile iron and functional consequences,, Blood, 2006, 108, 3195–3203.

    CAS  PubMed  Google Scholar 

  146. W. Breuer, E. Greenberg, Z. I. Cabantchik, Newly delivered transferrin iron and oxidative cell injury, FEBS Lett., 1997, 403, 213–219.

    CAS  PubMed  Google Scholar 

  147. P. Morliere, S. Salmon, M. Aubailly, A. Rister, R. Santus, Sensitization of skin fibroblasts to UVA by excess iron, Biochim. Biophys. Acta, 1997, 1334, 283–290.

    CAS  PubMed  Google Scholar 

  148. A. M. Konijn, H. Glickstein, B. Vaisman, E. G. Meyron-Holtz, I. N. Slotki, Z. I. Cabantchik, The cellular labile iron pool and intracellular ferritin in K562 cells, Blood, 1999, 94, 2128–2134.

    CAS  PubMed  Google Scholar 

  149. W. Breuer, S. Epsztejn, Z. I. Cabantchik, Dynamics of the cytosolic chelatable iron pool of K562 cells, FEBS Lett., 1996, 382, 304–308.

    CAS  PubMed  Google Scholar 

  150. C. E. Thomas, S. D. Aust, Reductive release of iron from ferritin by cation free radicals of paraquat and other bipyridyls, J. Biol. Chem., 1986, 261, 13064–13070.

    CAS  PubMed  Google Scholar 

  151. B. J. Bolann, R. J. Ulvik, On the ability of superoxide to release iron from ferritin, Eur. J. Biochem., 1990, 193, 899–904.

    CAS  PubMed  Google Scholar 

  152. Y. Bando, K. Aki, Superoxide-mediated release of iron from feritin by some flavoenzymes, Biochem. Biophys. Res. Commun., 1990, 168, 389–395.

    CAS  PubMed  Google Scholar 

  153. F. Funk, J. P. Lenders, R. R. Crichton, W. Schneider, Reductive mobilisation of ferritin iron, Eur. J. Biochem., 1985, 152, 167–172.

    CAS  PubMed  Google Scholar 

  154. D. W. Reif, Ferritin as a source of iron for oxidative damage, Free Radical Biol. Med., 1992, 12, 417–427.

    CAS  Google Scholar 

  155. S. D. Aust, C. F. Chignell, T. M. Bray, B. Kalyanaraman, R. P. Mason, Free radicals in toxicology, Toxicol. Appl. Pharmacol., 1993, 120, 168–178.

    CAS  PubMed  Google Scholar 

  156. M. Aubailly, R. Santus, S. Salmon, Ferrous iron release from ferritin by ultraviolet A radiation, Photochem. Photobiol., 1991, 54, 769–773.

    CAS  PubMed  Google Scholar 

  157. P. I. Oteiza, C. G. Kleinman, M. Demasi, E. J. H. Bechara, 5-aminolevulinic acid induces iron release from ferritin, Arch. Biochem. Biophys., 1995, 316, 607–611.

    CAS  PubMed  Google Scholar 

  158. B. Vaisman, E. Fibach, A. M. Konijn, Utilization of intracellular ferritin iron for hemoglobin synthesis in developing human erythroid precursors, Blood, 1997, 90, 831–838.

    CAS  PubMed  Google Scholar 

  159. M. Horackova, P. Ponka, Z. Byczko, The antioxidant effects of a novel iron chelator salicaldehyde isonicotinoyl hydrazone in the prevention of H2O2 injury in adult cardiomyocytes, Cardiovasc. Res., 2000, 47, 529–536.

    CAS  PubMed  Google Scholar 

  160. T. Simunek, C. Boer, R. A. Bouwman, R. Vasblom, A. M. Versteilen, M. Sterba, V. Gersl, R. Hrdina, P. Ponka, J. J. de Lange, W. J. Paulus, R. J. Musters, SIH, a novel lipophilic iron chelator, protects H9c2 cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell death, J. Mol. Cell. Cardiol., 2005, 39, 345–354.

    CAS  PubMed  Google Scholar 

  161. T. Kurz, A. Terman, U. T. Brunk, Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron, Arch. Biochem. Biophys., 2007, 462, 220–230.

    CAS  PubMed  Google Scholar 

  162. T. Kurz, A. Leake, T. Von Zglinicki, U. T. Brunk, Relocalized redox active lysosomal iron is an important mediator of oxidative-stress-induced DNA damage, Biochem. J., 2004, 378, 1039–1045.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. M. Zhao, F. Antunes, J. W. Eaton, U. T. Brunk, Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis, Eur. J. Biochem., 2003, 270, 3778–3786.

    CAS  PubMed  Google Scholar 

  164. T. Kurz, B. Gustafsson, U. T. Brunk, Intralysosomal iron chelation protects against oxidative stress-induced cellular damage, FEBS J., 2006, 273, 3106–3117.

    CAS  PubMed  Google Scholar 

  165. H. L. Persson, Z. Yu, O. Tirosh, J. W. Eaton, U. T. Brunk, Prevention of oxidant-induced cell death by lysosomotropic iron chelators, Free Radical Biol. Med., 2003, 34, 1295–1305.

    CAS  Google Scholar 

  166. A. Cozzi, B. Corsi, S. Levi, P. Santambrogio, A. Albertini, P. Arosio, Overexpression of wild type and mutated human ferritin H-chain in Hela cels: in vivo role of ferroxidase activity, J. Biol. Chem., 2000, 275, 25122–25129.

    CAS  PubMed  Google Scholar 

  167. S. Epsztejn, H. Glickstein, V. Piccard, I. N. Slotki, W. Breuer, C. Beaumont, Z. I. Cabantchik, H-ferritin subunit Overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties, Blood, 1999, 94, 3593–3603.

    CAS  PubMed  Google Scholar 

  168. H. Glickstein, R. B. El, M. Shvartsman, Z. I. Cabantchik, Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells, Blood, 2005, 106, 3242–3250.

    CAS  PubMed  Google Scholar 

  169. O. Kakhlon, W. Breuer, A. Munnich, Z. I. Cabantchik, Iron redistribution as a therapeutic strategy for treating diseases of localized iron accumulation, Can. J. Physiol. Pharmacol., 2010, 88, 187–196.

    CAS  PubMed  Google Scholar 

  170. A. Wong, J. Yang, P. Cavadini, C. Gellera, B. Lonnerdal, F. Taroni, G. Cortopassi, The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis, Hum. Mol. Genet., 1999, 8, 425–430.

    CAS  PubMed  Google Scholar 

  171. H. Itoh, T. Shioda, T. Matsura, S. Koyama, T. Nakanishi, G. Kajiyama, T. Kawasaki, Iron ions induces mitochondrial DNA damage in HTC rat hepatoma cell culture- role of antioxidants in mitochondrial DNA protection from oxidative stresses, Arch. Biochem. Biophys., 1994, 313, 120–125.

    CAS  PubMed  Google Scholar 

  172. C. K. Lim, D. S. Kalinowski, D. R. Richardson, Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich’s ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class, Mol. Pharmacol., 2008, 74, 225–235.

    CAS  PubMed  Google Scholar 

  173. A. Uchiyama, J-S. Kim, K. Kon, H. Jaeschke, K. Ikejima, S. Watanabe, J. J. Lemasters, Translocation of iron from lysosome into mitochondria is a key event during oxidative stress-induced hepatocellular injury, Hepatology, 2008, 48, 1644–1654.

    CAS  PubMed  Google Scholar 

  174. R. A. Swerlick, N. J. Korman, UVA and NF-kappaB activity: ironing out the details, Comment on: J. Invest. Dermatol. 2004 122:14401447, J. Invest. Dermatol., 2004, 122, xi–xii.

    CAS  PubMed  Google Scholar 

  175. E. Kvam, R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    CAS  PubMed  Google Scholar 

  176. S. Mecklenburg, C. A. Collins, M. Döring, T. Burkholz, M. Abbas, F. H. Fry, C. Pourzand, C. Jacob, The design of multifunctional antioxidants against the damaging ingredients of oxidative stress, Phosphorus, Sulfur Silicon Relat. Elem., 2008, 183, 863–888.

    CAS  Google Scholar 

  177. C. A. Collins, F. H. Fry, A. L. Holme, S. Pariagh, A. Yiakouvaki, A. Al-Qenaei, C. Pourzand, C. Jacob, Towards Multifunctional Antioxidants: Synthesis, Electrochemistry, in vitro and Cell Culture Evaluation of Compounds with Ligand/Catalytic Properties, Org. Biomol. Chem., 2005, 3, 1541–1546.

    CAS  PubMed  Google Scholar 

  178. L. A. Applegate, A. Noel, G. Vile, E. Frenk, R. M. Tyrrell, Two genes contribute to different extents to the heme oxygenase enzyme activity measured in cultured human skin fibroblasts and keratinocytes: implications for protection against oxidant stress, Photochem. Photobiol., 1995, 61, 285–291.

    CAS  PubMed  Google Scholar 

  179. M. J. Pygmalion, L. Ruiz, E. Popovic, J. Gizard, P. Portes, X. Marat, K. Lucet-Levannier, B. Muller, J. B. Galey, MJ Pygmalion, L Ruiz, E Popovic, J Gizard, P Portes, X Marat, K Lucet-Levannier, B Muller, JB Galey, Skin cell protection against UVA by Sideroxyl, a new antioxidant complementary to sunscreens, Free Radical Biol. Med., 2010, 49, 1629–1637.

    CAS  Google Scholar 

  180. M. Creighton-Gutteridge, R. M. Tyrrell, A novel iron chelator that does not induce HIF-1 activity, Free Radical Biol. Med., 2002, 33, 356–363.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charareh Pourzand.

Additional information

Contribution to the themed issue on the biology of UVA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aroun, A., Zhong, J.L., Tyrrell, R.M. et al. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem Photobiol Sci 11, 118–134 (2012). https://doi.org/10.1039/c1pp05204g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05204g

Navigation