Skip to main content
Log in

Spectroscopic studies of 1,2-diaminoanthraquinone (DAQ) as a fluorescent probe for the imaging of nitric oxide in living cells

  • Technical Note
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Spectroscopic analysis of the fluorescent probe 1,2-diaminoanthraquinone (DAQ) provides information about the mechanism of nitric oxide imaging in living cells. Fluorescent aggregates of a reaction product of DAQ are thought to be responsible for the images obtained with confocal fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. L. H. Williams, A chemist’s view of the nitric oxide story, Org. Biomol. Chem., 2003, 1, 441–449, and references cited therein

    Article  CAS  PubMed  Google Scholar 

  2. E. Culotta, D. E. Koshland, Jr., NO news is good-news, Science, 1992, 258, 1862–1865.

    Article  CAS  PubMed  Google Scholar 

  3. R. M. Palmer, D. S. Ashton, S. Moncada, Vascular endothelial-cells synthesize nitric-oxide froml-arginine, Nature, 1988, 333, 664–666.

    Article  CAS  PubMed  Google Scholar 

  4. L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric-oxide, Proc. Natl. Acad. Sci. USA, 1987, 84, 9265–9269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. Garthwaite, S. L. Charles, R. Chess-Williams, Endothelium-derived relaxing factor release on activation of nmda receptors suggests role as intercellular messenger in the brain, Nature, 1988, 336, 385–388.

    Article  CAS  PubMed  Google Scholar 

  6. J. R. Lancaster, J. B. Hibbs, EPR demonstration of iron nitrosyl complex-formation by cytotoxic activated macrophages, Proc. Natl. Acad. Sci. USA, 1990, 87, 1223–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. H. Lim, D. Xu, S. J. Lippard, Visualization of nitric oxide in living cells by a copper-based fluorescent probe, Nat. Chem. Biol., 2006, 2, 375–380.

    Article  CAS  PubMed  Google Scholar 

  8. M. H. Lim, B. A. Wong, W. H. Pitcock, Jr., D. Mokshagundam, M.-H. Baik, S. J. Lippard, Direct nitric oxide detection in aqueous solution by copper (ii) fluorescein complexes, J. Am. Chem. Soc., 2006, 128, 14364–14373.

    Article  CAS  PubMed  Google Scholar 

  9. E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs, J. Am. Chem. Soc., 2005, 127, 3684–3685.

    Article  CAS  PubMed  Google Scholar 

  10. M. Sato, N. Hida, Y. Umezawa, Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells, Proc. Natl. Acad. Sci. USA, 2005, 102, 14515–14520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Nagano, T. Yoshimura, Bioimaging of nitric oxide, Chem. Rev., 2002, 102, 1235.

    Article  CAS  PubMed  Google Scholar 

  12. O. von Bohlen und Halbach, Nitric oxide imaging in living neuronal tissues using fluorescent probes, Nitric Oxide, 2003, 9, 217–228.

    Article  Google Scholar 

  13. A. Gomes, E. Fernandes, J. L. F. C. Lima, Use of fluorescence probes for detection of reactive nitrogen species: a review, J. Fluoresc., 2006, 16, 119–139.

    Article  CAS  PubMed  Google Scholar 

  14. S. Wang, J. F. R. Paton, S. Kasparov, The challenge of real-time measurements of nitric oxide release in the brain, Autonomic Neuroscience-Basic & Clinical, 2006, 126-127, 59–67.

    Article  CAS  Google Scholar 

  15. P. Wardman, Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects, Free Rad. Biol. Med., 2007, 43, 995–1022.

    Article  CAS  PubMed  Google Scholar 

  16. P. Heiduschka, S. Thanos, NO production during neuronal cell death can be directly assessed by a chemical reaction in vivo, NeuroReport, 1998, 9, 4051–4057.

    CAS  PubMed  Google Scholar 

  17. X. Chen, C. Sheng, X. Zheng, Direct nitric oxide imaging in cultured hippocampal neurons with diaminoanthraquinone and confocal microscopy, Cell. Biol. Int., 2001, 25, 593–598.

    Article  CAS  PubMed  Google Scholar 

  18. O. von Bohlen und Halbach, D. Albrecht, U. Heinemann, S. Schuchmann, Spatial nitric oxide imaging using 1,2-diaminoanthraquinone to investigate the involvement of nitric oxide in long-term potentiation in rat brain slices, NeuroImage, 2002, 15, 633–639.

    Article  PubMed  Google Scholar 

  19. S. Schuchmann, D. Albrecht, U. Heinemann, O. von Bohlen und Halbach, Nitric oxide modulates low-Mg2+-induced epileptiform activity in rat hippocampal-entorhinal cortex slices, Neurobiol. Disease, 2002, 11, 96–105.

    Article  CAS  Google Scholar 

  20. M. V. Beligni, A. Fath, P. C. Bethke, L. Lamattina, R. L. Jones, Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers, Plant Physiol., 2002, 129, 1642–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. Püttmann, E.-M. Gerlach, M. Krüger, D. Blottner, Neuromuscular contacts induce nitric oxide signals in skeletal myotubes in vitro, Neurosignals, 2005, 14, 85–95.

    Article  PubMed  Google Scholar 

  22. C. Stöhr, S. Stremlau, Formation and possible roles of nitric oxide in plant roots, J. Exp. Bot., 2006, 57, 463–470.

    Article  PubMed  Google Scholar 

  23. M. Bru, M. I. Burguete, F. Galindo, S. V. Luis, M. J. Marín, L. Vigara, Cross-linked poly(2-hydroxyethylmethacrylate) films doped with 1,2-diaminoanthraquinone (DAQ) as efficient materials for the colorimetric sensing of nitric oxide and nitrite anion, Tetrahedron Lett., 2006, 47, 1787–1791.

    Article  CAS  Google Scholar 

  24. D. H. P. Hedges, D. J. Richardson, D. A. Russell, Electrochemical control of protein monolayers at indium tin oxide surfaces for the reagentless optical biosensing of nitric oxide, Langmuir, 2004, 20, 1901–1908.

    Article  CAS  PubMed  Google Scholar 

  25. D. J. Blyth, J. W. Alyott, J. W. B. Moir, D. J. Richardson, D. A. Russell, Optical biosensing of nitric oxide using the metalloprotein cytochrome c’, Analyst, 1999, 124, 129–134.

    Article  CAS  PubMed  Google Scholar 

  26. M. S. Khan, Z. H. Khan, Electronic absorption spectra of amino substituted anthraquinones and their interpretation using the ZINDO/S and AM1 methods, Spectrochim. Acta, Part A, 2003, 59, 1409–1426.

    Article  Google Scholar 

  27. The fluorescence quantum yield ofDAQ was estimated to be ca. 0.0004 at pH 7.4 and 5.9 using ethidium bromide as standard

  28. W. J. Murphy, M. Muroi, C. X. Zhang, T. Suzuki, S. W. Russell, Both basal and enhancer kappa B elements are required for full induction of the Mouse inducible nitric oxide synthase gene, J. Endotoxin Res., 1996, 3, 381–393.

    Article  CAS  Google Scholar 

  29. F. Galindo, M. I. Burguete, L. Vigara, S. V. Luis, N. Kabir, J. Gavrilovic, D. A. Russell, Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live cells, Angew. Chem., Int. Ed., 2005, 44, 6504–6508.

    Article  CAS  Google Scholar 

  30. H. Tong, Y. Hong, Y. Dong, M. Häußler, J. W. Y. Lam, Z. Li, Z. Guo, Z. Guo, B. Z. Tang, Fluorescent “light up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics, Chem. Commun., 2006, 3705–3707, and references therein

    Google Scholar 

  31. X. Zhang, W.-S. Kim, N. Hatcher, K. Potgieter, L. L. Moroz, R. Gillette, J. V. Sweedler, Interfering with nitric oxide measurements. 4,5-Diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid, J. Biol. Chem., 2002, 277, 48472–48478.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Galindo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galindo, F., Kabir, N., Gavrilovic, J. et al. Spectroscopic studies of 1,2-diaminoanthraquinone (DAQ) as a fluorescent probe for the imaging of nitric oxide in living cells. Photochem Photobiol Sci 7, 126–130 (2008). https://doi.org/10.1039/b707528f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b707528f

Navigation