Skip to main content

Advertisement

Log in

Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The rise of multiply antibiotic resistant bacteria has led to searches for novel antimicrobial therapies to treat infections. Photodynamic therapy (PDT) is a potential candidate; it uses the combination of a photosensitizer with visible light to produce reactive oxygen species that lead to cell death. We used PDT mediated by meso-mono-phenyl-tri(N-methyl-4-pyridyl)-porphyrin (PTMPP) to treat burn wounds in mice with established Staphylococcus aureus infections The third degree burn wounds were infected with bioluminescent S. aureus. PDT was applied after one day of bacterial growth by adding a 25% DMSO/500 µM PTMPP solution to the wound followed by illumination with red light and periodic imaging of the mice using a sensitive camera to detect the bioluminescence. More than 98% of the bacteria were eradicated after a light dose of 210 J cm−2 in the presence of PTMPP. However, bacterial re-growth was observed. Light alone or PDT both delayed the wound healing. These data suggest that PDT has the potential to rapidly reduce the bacterial load in infected burns. The treatment needs to be optimized to reduce wound damage and prevent recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Coates, C. A. Adams, W. J. Cunliffe, K. T. McGinley, E. A. Eady, J. J. Leyden, J. Ravenscroft, S. Vyakrnam, B. Vowels, Does oral isotretinoin prevent Propionibacterium acnes resistance?, Dermatology, 1997, 195Suppl. 1, 4–9

    Article  PubMed  Google Scholar 

  2. P. Coates, C. A. Adams, W. J. Cunliffe, K. T. McGinley, E. A. Eady, J. J. Leyden, J. Ravenscroft, S. Vyakrnam, B. Vowels, Discussion of ‘Does oral isotretinoin prevent Propionibacterium acnes resistance?’, Dermatology, 1997, 195Suppl. 1, 38–40.

    Google Scholar 

  3. J. I. Ross, A. M. Snelling, E. Carnegie, P. Coates, W. J. Cunliffe, V. Bettoli, G. Tosti, A. Katsambas, J. I. Galvan Perez Del Pulgar, O. Rollman, L. Torok, E. A. Eady, J. H. Cove, Antibiotic-resistant acne: lessons from Europe, Br. J. Dermatol., 2003, 148, 467–478.

    Article  CAS  PubMed  Google Scholar 

  4. T. D. Wyatt, W. P. Ferguson, T. S. Wilson, E. McCormick, Gentamicin resistant Staphylococcus aureus associated with the use of topical gentamicin, J. Antimicrob. Chemother., 1977, 3, 213–217.

    Article  CAS  PubMed  Google Scholar 

  5. A. P. Castano, T. N. Demidova, M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  6. T. N. Demidova, M. R. Hamblin, Photodynamic therapy targeted to pathogens, Int. J. Immunopathol. Pharmacol., 2004, 17, 245–254.

    Article  CAS  PubMed  Google Scholar 

  7. M. R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H. Ashkenazi, Y. Nitzan, D. Gal, Photodynamic effects of antioxidant substituted porphyrin photosensitizers on gram-positive and -negative bacterial, Photochem. Photobiol., 2003, 77, 186–191.

    Article  CAS  PubMed  Google Scholar 

  9. Z. Malik, J. Hanania, Y. Nitzan, Bactericidal effects of photoactivated porphyrins—an alternative approach to antimicrobial drugs, J. Photochem. Photobiol., B, 1990, 5, 281–293.

    Article  CAS  Google Scholar 

  10. M. Soncin, C. Fabris, A. Busetti, D. Dei, D. Nistri, G. Roncucci, G. Jori, Approaches to selectivity in the Zn(ii)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus, Photochem. Photobiol. Sci., 2002, 1, 815–819.

    Article  CAS  PubMed  Google Scholar 

  11. M. Wainwright, D. A. Phoenix, S. L. Laycock, D. R. Wareing, P. A. Wright, Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus, FEMS Microbiol. Lett., 1998, 160, 177–81.

    Article  CAS  PubMed  Google Scholar 

  12. F. M. Lauro, P. Pretto, L. Covolo, G. Jori, G. Bertoloni, Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene–polylysine conjugates, Photochem. Photobiol. Sci., 2002, 1, 468–470.

    Article  CAS  PubMed  Google Scholar 

  13. V. Edwards-Jones, J. E. Greenwood, M. B. R. Group, What’s new in burn microbiology? James Laing Memorial Prize Essay 2000, Burns, 2003, 29, 15–24.

    Article  PubMed  Google Scholar 

  14. B. A. Pruitt, Jr., A. T. McManus, S. H. Kim, C. W. Goodwin, Burn wound infections: current status, World J. Surg., 1998, 22, 135–145.

    Article  PubMed  Google Scholar 

  15. A. J. Singer, S. A. McClain, Persistent wound infection delays epidermal maturation and increases scarring in thermal burns, Wound Repair Regen., 2002, 10, 372–377.

    Article  PubMed  Google Scholar 

  16. N. Cook, Methicillin-resistant Staphylococcus aureusversus the burn patient, Burns, 1998, 24, 91–98.

    Article  CAS  PubMed  Google Scholar 

  17. N. Komerik, H. Nakanishi, A. J. MacRobert, B. Henderson, P. Speight, M. Wilson, In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model, Antimicrob. Agents Chemother., 2003, 47, 932–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Orenstein, D. Klein, J. Kopolovic, E. Winkler, Z. Malik, N. Keller, Y. Nitzan, The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections, FEMS Immunol. Med. Microbiol., 1997, 19, 307–14.

    Article  CAS  PubMed  Google Scholar 

  19. M. R. Hamblin, T. Zahra, C. H. Contag, A. T. McManus, T. Hasan, Optical monitoring and treatment of potentially lethal wound infections in vivo, J. Infect. Dis., 2003, 187, 1717–1726.

    Article  PubMed  Google Scholar 

  20. K. P. Francis, D. Joh, C. Bellinger-Kawahara, M. J. Hawkinson, T. F. Purchio, P. R. Contag, Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct, Infect. Immun., 2000, 68, 3594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T. C. Doyle, S. M. Burns, C. H. Contag, In vivo bioluminescence imaging for integrated studies of infection, Cell. Microbiol., 2004, 6, 303–317.

    Article  CAS  PubMed  Google Scholar 

  22. K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, P. R. Contag, Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon, Infect. Immun., 2001, 69, 3350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, K. U. Jansen, Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models, Antimicrob. Agents Chemother., 2003, 47, 2740–2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. L. Kadurugamuwa, L. V. Sin, J. Yu, K. P. Francis, T. F. Purchio, P. R. Contag, Noninvasive optical imaging method to evaluate postantibiotic effects on biofilm infection in vivo, Antimicrob. Agents Chemother., 2004, 48, 2283–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. L. Kadurugamuwa, L. Sin, E. Albert, J. Yu, K. Francis, M. DeBoer, M. Rubin, C. Bellinger-Kawahara, T. R. Parr, Jr., P. R. Contag, Direct continuous method for monitoring biofilm infection in a mouse model, Infect. Immun., 2003, 71, 882–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T. G. Smijs, H. J. Schuitmaker, Photodynamic inactivation of the dermatophyte Trichophyton rubrum, Photochem. Photobiol., 2003, 77, 556–560.

    Article  CAS  PubMed  Google Scholar 

  27. S. A. Lambrechts, M. C. Aalders, D. H. Langeveld-Klerks, Y. Khayali, J. W. Lagerberg, Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins, Photochem. Photobiol., 2004, 79, 297–302.

    Article  CAS  PubMed  Google Scholar 

  28. M. Merchat, J. D. Spikes, G. Bertoloni, G. Jori, Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins, J. Photochem. Photobiol., B, 1996, 35, 149–57.

    Article  CAS  Google Scholar 

  29. L. L. Trannoy, J. W. Lagerberg, T. M. Dubbelman, H. J. Schuitmaker, A. Brand, Positively charged porphyrins: a new series of photosensitizers for sterilization of RBCs, Transfusion, 2004, 44, 1186–1196.

    Article  CAS  PubMed  Google Scholar 

  30. C. P. Sawhney, R. K. Sharma, K. R. Rao, R. Kaushish, Long-term experience with 1 per cent topical silver sulfadiazine cream in the management of burn wounds, Burns, 1989, 15, 403–6.

    Article  CAS  PubMed  Google Scholar 

  31. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 2000, 52, 662–668.

    Article  CAS  PubMed  Google Scholar 

  32. A. B. Lansdown, Silver. I: Its antibacterial properties and mechanism of action, J. Wound Care, 2002, 11, 125–130.

    Article  CAS  PubMed  Google Scholar 

  33. B. D. Jett, K. L. Hatter, M. M. Huycke, M. S. Gilmore, Simplified agar plate method for quantifying viable bacteria, Biotechniques, 1997, 23, 648–50.

    Article  CAS  PubMed  Google Scholar 

  34. N. A. Busch, E. M. Zanzot, P. M. Loiselle, E. A. Carter, J. E. Allaire, M. L. Yarmush, H. S. Warren, A model of infected burn wounds using Escherichia coli O18:K1:H7 for the study of gram-negative bacteremia and sepsis, Infect. Immun., 2000, 68, 3349–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. A. Gilpin, Calculation of a new Meeh constant and experimental determination of burn size, Burns, 1996, 22, 607–611.

    Article  CAS  PubMed  Google Scholar 

  36. M. R. Hamblin, D. A. O’Donnell, N. Murthy, C. H. Contag, T. Hasan, Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging, Photochem. Photobiol., 2002, 75, 51–7.

    Article  CAS  PubMed  Google Scholar 

  37. A. C. Williams, B. W. Barry, Penetration enhancers, Adv. Drug Deliv. Rev., 2004, 56, 603–618.

    Article  CAS  PubMed  Google Scholar 

  38. Z. Malik, G. Kostenich, L. Roitman, B. Ehrenberg, A. Orenstein, Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice, J. Photochem. Photobiol., B, 1995, 28, 213–218.

    Article  CAS  Google Scholar 

  39. F. S. De Rosa, J. M. Marchetti, J. A. Thomazini, A. C. Tedesco, M. V. Bentley, A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulfoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy, J. Control. Release, 2000, 65, 359–366.

    Article  PubMed  Google Scholar 

  40. C. Lucas, L. J. Criens-Poublon, C. T. Cockrell, R. J. de Haan, Wound healing in cell studies and animal model experiments by Low Level Laser Therapy; were clinical studies justified? A systematic review, Lasers Med. Sci., 2002, 17, 110–134.

    Article  CAS  PubMed  Google Scholar 

  41. A. Kubler, R. K. Finley, 3rd, I. A. Born, T. S. Mang, Effect of photodynamic therapy on the healing of a rat skin flap and its implication for head and neck reconstructive surgery, Lasers Surg. Med., 1996, 18, 397–405.

    Article  CAS  PubMed  Google Scholar 

  42. R. S. Jayasree, A. K. Gupta, K. Rathinam, P. V. Mohanan, M. Mohanty, The influence of photodynamic therapy on the wound healing process in rats, J. Biomater. Appl., 2001, 15, 176–186.

    Article  CAS  PubMed  Google Scholar 

  43. F. Gad, T. Zahra, K. P. Francis, T. Hasan, M. R. Hamblin, Targeted photodynamic therapy of established soft-tissue infections in mice, Photochem. Photobiol. Sci., 2004, 3, 451–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Kassab, C. Fabris, M. P. Defilippis, D. Dei, L. Fantetti, G. Roncucci, E. Reddi, G. Jori, Skin-photosensitizing properties of Zn(ii)-2(3),9(10),16(17),23(24)-tetrakis-(4-oxy-N-methylpiperidinyl) phthalocyanine topically administered to mice, J. Photochem. Photobiol., B, 2000, 55, 128–37.

    Article  CAS  Google Scholar 

  45. B. W. Henderson, T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol., 1992, 55, 145–57.

    Article  CAS  PubMed  Google Scholar 

  46. M. R. Thissen, M. W. de Blois, D. J. Robinson, H. S. de Bruijn, R. P. Dutrieux, W. M. Star, H. A. Neumann, PpIX fluorescence kinetics and increased skin damage after intracutaneous injection of 5-aminolevulinic acid and repeated illumination, J. Invest. Dermatol., 2002, 118, 239–245.

    Article  CAS  PubMed  Google Scholar 

  47. C. G. Mayhall, The epidemiology of burn wound infections: then and now, Clin. Infect. Dis., 2003, 37, 543–550.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrechts, S.A.G., Demidova, T.N., Aalders, M.C.G. et al. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 4, 503–509 (2005). https://doi.org/10.1039/b502125a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b502125a

Navigation