Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate

Subjects

Abstract

Osteosarcoma patients are commonly treated with high doses of methotrexate (MTX). MTX is an analog of folate, which is essential for DNA synthesis. Genetic polymorphism at single nucleotide can be indicative to the prognostic outcome in patients. Germ-line variants in candidate genes, coding for enzymes active in the metabolism of MTX, were studied in 62 osteosarcoma patients. Patients harboring the GG genotype in reduced folate carrier 1 (RFC1) rs1051266 had significantly better survival in comparison with patients having the AA genotype (P=0.046). These patients also had a lower frequency of metastasis (15%, P=0.029). Also patients homozygous for the G allele of rs1053129 in the dihydrofolate reductase (DHFR) gene were more likely to have a metastasis (45%, P= 0.005), and the methylenetetetrahydrofolate reductase (MTHFR) 677C allele was associated with higher degree of liver toxicity (88%, P=0.007). The study suggests that germ-line variants in the MTX metabolic pathway are associated with survival and side effects in patients treated with MTX.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aksnes LH, Hall KS, Folleraas G, Stenwig A, Saeteri G et al. Management of high-grade bone sarcomas over two decades: The Norwegian Radium Hospital experience. Acta Oncol 2006; 45: 38–46.

    Article  PubMed  Google Scholar 

  2. Ottaviani G, Jaffe N . The epidemiology of osteosarcoma. Cancer Treat Res 2009; 152: 3–13.

    Article  Google Scholar 

  3. McNairn JD, Damron TA, Landas SK, Ambrose JL, Shrimpton AE . Inheritance of osteosarcoma and Paget's disease of bone: a familial loss of heterozygosity study. J Mol Diagn 2001; 3: 171–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002; 20: 776–790.

    Article  PubMed  Google Scholar 

  5. Treon SP, Chabner BA . Concepts in use of high-dose methotrexate therapy. Clin Chem 1996; 42: 1322–1329.

    CAS  PubMed  Google Scholar 

  6. Walker AM, Funch D, Dreyer NA, Tolman KG, Kremer JM, Alarcon GS et al. Determinants of serious liver disease among patients receiving low-dose methotrexate for rheumatoid arthritis. Arthritis Rheum 1993; 36: 329–335.

    Article  CAS  PubMed  Google Scholar 

  7. Weinblatt ME, Kaplan H, Germain BF, Block S, Solomon SD, Merriman RC et al. Methotrexate in rheumatoid arthritis. A five-year prospective multicenter study. Arthritis Rheum 1994; 37: 1492–1498.

    Article  CAS  PubMed  Google Scholar 

  8. Belkov VM, Krynetski EY, Schuetz JD, Yanishevski Y, Masson E, Mathew S et al. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood 1999; 93: 1643–1650.

    CAS  PubMed  Google Scholar 

  9. van der Heijden JW, Dijkmans BA, Scheper RJ, Jansen G . Drug Insight: resistance to methotrexate and other disease-modifying antirheumatic drugs—from bench to bedside. Nat Clin Pract Rheumatol 2007; 3: 26–34.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Taub JW, Williamson M, Wong SC, Hukku B, Pullen J et al. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin Cancer Res 1998; 4: 2169–2177.

    CAS  PubMed  Google Scholar 

  11. Goldman ID, Matherly LH . The cellular pharmacology of methotrexate. Pharmacol Ther 1985; 28: 77–102.

    Article  CAS  PubMed  Google Scholar 

  12. Green MR, Chowdhary S, Lombardi KM, Chalmers LM, Chamberlain M . Clinical utility and pharmacology of high-dose methotrexate in the treatment of primary CNS lymphoma. Expert Rev Neurother 2006; 6: 635–652.

    Article  CAS  PubMed  Google Scholar 

  13. Bertino JR, Goker E, Gorlick R, Li WW, Banerjee D . Resistance mechanisms to methotrexate in tumors. Stem Cells 1996; 14: 5–9.

    Article  CAS  PubMed  Google Scholar 

  14. Serra M, Reverter-Branch G, Maurici D, Benini S, Shen JN, Chano T et al. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol 2004; 15: 151–160.

    Article  CAS  PubMed  Google Scholar 

  15. Holmboe L, Andersen AM, Morkrid L, Slordal L, Hall KS . High dose methotrexate chemotherapy: pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol 2012; 73: 106–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nordgard SH, Alnaes GI, Hihn B, Lingjaerde OC, Liestol K, Tsalenko A et al. Pathway based analysis of SNPs with relevance to 5-FU therapy: relation to intratumoral mRNA expression and survival. Int J Cancer 2008; 123: 577–585.

    Article  CAS  PubMed  Google Scholar 

  17. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  18. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  19. Lettre G, Lange C, Hirschhorn JN . Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet Epidemiol 2007; 31: 358–362.

    Article  PubMed  Google Scholar 

  20. Gorlick R, Goker E, Trippett T, Steinherz P, Elisseyeff Y, Mazumdar M et al. Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood 1997; 89: 1013–1018.

    CAS  PubMed  Google Scholar 

  21. Wong SC, Zhang L, Proefke SA, Hukku B, Matherly LH . Gene amplification and increased expression of the reduced folate carrier in transport elevated K562 cells. Biochem Pharmacol 1998; 55: 1135–1138.

    Article  CAS  PubMed  Google Scholar 

  22. Wong SC, Zhang L, Witt TL, Proefke SA, Bhushan A, Matherly LH . Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier. J Biol Chem 1999; 274: 10388–10394.

    Article  CAS  PubMed  Google Scholar 

  23. Goto Y, Yue L, Yokoi A, Nishimura R, Uehara T, Koizumi S et al. A novel single-nucleotide polymorphism in the 3'-untranslated region of the human dihydrofolate reductase gene with enhanced expression. Clin Cancer Res 2001; 7: 1952–1956.

    CAS  PubMed  Google Scholar 

  24. Walling J . From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Invest New Drugs 2006; 24: 37–77.

    Article  PubMed  Google Scholar 

  25. Matherly LH, Taub JW, Ravindranath Y, Proefke SA, Wong SC, Gimotty P et al. Elevated dihydrofolate reductase and impaired methotrexate transport as elements in methotrexate resistance in childhood acute lymphoblastic leukemia. Blood 1995; 85: 500–509.

    CAS  PubMed  Google Scholar 

  26. Etienne MC, Formento JL, Chazal M, Francoual M, Magne N, Formento P et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics 2004; 14: 785–792.

    Article  CAS  Google Scholar 

  27. Lewis SJ, Ebrahim S, Davey SG . Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ 2005; 331: 1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwahn B, Rozen R . Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics 2001; 1: 189–201.

    Article  CAS  PubMed  Google Scholar 

  29. Van der Linden IJ, Afman LA, Heil SG, Blom HJ . Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc 2006; 65: 204–215.

    Article  CAS  PubMed  Google Scholar 

  30. Hagleitner MM, Coenen MJ, Schrauwen M, Vermeulen SH, de Bont ES et al. Association of a genetic variant in the ABCC2 gene with high methotrexate plasma concentrations in pediatric malignancies. Journal of Clinical Oncology 2010; 28: 9522.

    Article  Google Scholar 

  31. Patiño-García A, Zalacaín M, Marrodán L, San-Julián M, Sierrasesúmaga L . Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr 2009; 154: 688–693.

    Article  PubMed  Google Scholar 

  32. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M . Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002; 100: 3832–3834.

    Article  PubMed  Google Scholar 

  33. Gregers J, Christensen IJ, Dalhoff K, Lausen B, Schroeder H, Rosthoej S et al. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood 2010; 115: 4671–4677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang L, Chen W, Wang J, Tan Y, Zhou Y, Ding W et al. Reduced folate carrier gene G80A polymorphism is associated with an increased risk of gastroesophageal cancers in a Chinese population. Eur J Cancer 2006; 42: 3206–3211.

    Article  CAS  PubMed  Google Scholar 

  35. Ando Y, Shimada H, Matsumoto N, Hirota T, Oribe M, Otsuka E et al. Role of methotrexate polyglutamation and reduced folate carrier 1 (RFC1) gene polymorphisms in clinical assessment indexes. Drug Metab Pharmacokinet 2013; 28: 442–445.

    Article  CAS  PubMed  Google Scholar 

  36. Leyva-Vazquez MA, Organista-Nava J, Gomez-Gomez Y, Contreras-Quiroz A, Flores-Alfaro E, Illades-Aguiar B . Polymorphism G80A in the reduced folate carrier gene and its relationship to survival and risk of relapse in acute lymphoblastic leukemia. J Investig Med 2012; 60: 1064–1067.

    Article  CAS  PubMed  Google Scholar 

  37. Drozdzik M, Rudas T, Pawlik A, Gornik W, Kurzawski M, Herczynska M . Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics J 2007; 7: 404–407.

    Article  CAS  PubMed  Google Scholar 

  38. Chatterjee S, Pal JK . Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. Biol Cell 2009; 101: 251–262.

    Article  CAS  PubMed  Google Scholar 

  39. D'Angelo V, Ramaglia M, Iannotta A, Crisci S, Indolfi P, Francese M et al. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol 2011; 68: 1339–1346.

    Article  CAS  PubMed  Google Scholar 

  40. Caliz R, del AJ, Balsa A, Blanco F, Silva L, Sanmarti R et al. The C677T polymorphism in the MTHFR gene is associated with the toxicity of methotrexate in a Spanish rheumatoid arthritis population. Scand J Rheumatol 2012; 41: 10–14.

    Article  CAS  PubMed  Google Scholar 

  41. Yang L, Hu X, Xu L . Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol 2012; 33: 1445–1454.

    Article  CAS  PubMed  Google Scholar 

  42. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–113.

    Article  CAS  PubMed  Google Scholar 

  43. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R . A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64: 169–172.

    Article  CAS  PubMed  Google Scholar 

  44. Ingram SS, Seo PH, Martell RE, Clipp EC, Doyle ME, Montana GS et al. Comprehensive assessment of the elderly cancer patient: the feasibility of self-report methodology. J Clin Oncol 2002; 20: 770–775.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SJ is a PhD scholar from the Norwegian Health Authority grant nr HSE 2014061. This study was financed by a grant from the Norwegian Research Council to VNK (PK01-2007-0356). We would like to thank David Quigley for the critical reading of the manuscript and to Silje Nord for the contribution to the statistical analysis and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V N Kristensen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, S., Holmboe, L., Alnæs, G. et al. Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate. Pharmacogenomics J 15, 385–390 (2015). https://doi.org/10.1038/tpj.2015.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.11

This article is cited by

Search

Quick links