Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer

Abstract

Activation of Wnt signaling has been implicated in gastric tumorigenesis, although mutations in APC (adenomatous polyposis coli), CTNNB1 (β-catenin) and AXIN are seen much less frequently in gastric cancer (GC) than in colorectal cancer. In the present study, we investigated the relationship between activation of Wnt signaling and changes in the expression of secreted frizzled-related protein (SFRP) family genes in GC. We frequently observed nuclear β-catenin accumulation (13/15; 87%) and detected the active form of β-catenin in most (12/16; 75%) GC cell lines. CpG methylation-dependent silencing of SFRP1, SFRP2 and SFRP5 was frequently seen among GC cell lines (SFRP1, 16/16, 100%; SFRP2, 16/16, 100%; SFRP5, 13/16, 81%) and primary GC specimens (SFRP1, 42/46, 91%; SFRP2, 44/46, 96%; SFRP5, 30/46, 65%), and treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine rapidly restored SFRP expression. Ectopic expression of SFRPs downregulated T-cell factor/lymphocyte enhancer factor transcriptional activity, suppressed cell growth and induced apoptosis in GC cells. Analysis of global expression revealed that overexpression of SFRP2 repressed Wnt target genes and induced changes in the expression of numerous genes related to proliferation, growth and apoptosis in GC cells. It thus appears that aberrant SFRP methylation is one of the major mechanisms by which Wnt signaling is activated in GC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Arber N, Gammon MD, Hibshoosh H, Britton JA, Zhang Y, Schonberg JB et al. (1999). Overexpression of cyclin D1 occurs in both squamous carcinomas and adenocarcinomas of the esophagus and in adenocarcinomas of the stomach. Hum Pathol 30: 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T . (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caca K, Kolligs FT, Ji X, Hayes M, Qian J, Yahanda A et al. (1999). Beta- and gamma-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ 10: 369–376.

    CAS  PubMed  Google Scholar 

  • Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P et al. (2004). The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 64: 883–888.

    Article  CAS  PubMed  Google Scholar 

  • Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C et al. (2002). Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62: 3503–3506.

    CAS  PubMed  Google Scholar 

  • Fukui T, Kondo M, Ito G, Maeda O, Sato N, Yoshioka H et al. (2005). Transcriptional silencing of secreted frizzled related protein 1 (SFRP 1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene 24: 6323–6327.

    Article  CAS  PubMed  Google Scholar 

  • Gregorieff A, Clevers H . (2005). Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19: 877–890.

    Article  CAS  PubMed  Google Scholar 

  • He B, Lee AY, Dadfarmay S, You L, Xu Z, Reguart N et al. (2005a). Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells. Cancer Res 65: 743–748.

    CAS  PubMed  Google Scholar 

  • He B, Reguart N, You L, Mazieres J, Xu Z, Lee AY et al. (2005b). Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 24: 3054–3058.

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Poola-Kella S, Fornace Jr AJ . (2003). Gadd34 functional domains involved in growth suppression and apoptosis. Oncogene 22: 3827–3832.

    Article  CAS  PubMed  Google Scholar 

  • Horii A, Nakatsuru S, Miyoshi Y, Ichii S, Nagase H, Kato Y et al. (1992). The APC gene, responsible for familial adenomatous polyposis, is mutated in human gastric cancer. Cancer Res 52: 3231–3233.

    CAS  PubMed  Google Scholar 

  • Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J et al. (2001). Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 28: 53–57.

    CAS  PubMed  Google Scholar 

  • Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y . (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med 231: 20–27.

    Article  CAS  Google Scholar 

  • Jones SE, Jomary C . (2002). Secreted frizzled-related proteins: searching for relationships and patterns. Bioessays 24: 811–820.

    Article  CAS  PubMed  Google Scholar 

  • Koppert LB, van der Velden AW, van de Wetering M, Abbou M, van den Ouweland AM, Tilanus HW et al. (2004). Frequent loss of the AXIN1 locus but absence of AXIN1 gene mutations in adenocarcinomas of the gastro-oesophageal junction with nuclear beta-catenin expression. Br J Cancer 90: 892–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku JL, Park JG . (2005). Biology of SNU cell lines. Cancer Res Treatment 37: 1–19.

    Article  Google Scholar 

  • Lee AY, He B, You L, Dadfarmay S, Xu Z, Mazieres J et al. (2004). Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 23: 6672–6676.

    Article  CAS  PubMed  Google Scholar 

  • Liu TH, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C . (2006). CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res 66: 653–658.

    Article  CAS  PubMed  Google Scholar 

  • Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H . (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 65: 4218–4227.

    Article  CAS  PubMed  Google Scholar 

  • Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K et al. (2005). Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11: 1021–1027.

    CAS  PubMed  Google Scholar 

  • Naishiro Y, Yamada T, Takaoka AS, Hayashi R, Hasegawa F, Imai K et al. (2001). Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of beta-catenin/T-cell factor 4-mediated gene transactivation. Cancer Res 61: 2751–2758.

    CAS  PubMed  Google Scholar 

  • Offerhaus GJ, Giardiello FM, Krush AJ, Booker SV, Tersmette AC, Kelley NC et al. (1992). The risk of upper gastrointestinal cancer in familial adenomatous polyposis. Gastroenterology 102: 1980–1982.

    Article  CAS  PubMed  Google Scholar 

  • Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J et al. (2002). Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 21: 6598–6605.

    Article  CAS  PubMed  Google Scholar 

  • Risinger JI, Maxwell GL, Chandramouli GV, Aprelikova O, Litzi T, Umar A et al. (2005). Gene expression profiling of microsatellite unstable and microsatellite stable endometrial cancers indicates distinct pathways of aberrant signaling. Cancer Res 65: 5031–5037.

    Article  CAS  PubMed  Google Scholar 

  • Saikawa Y, Kubota T, Otani Y, Kitajima M, Modlin IM . (2001). Cyclin D1 antisense oligonucleotide inhibits cell growth stimulated by epidermal growth factor and induces apoptosis of gastric cancer cells. Jpn J Cancer Res 92: 1102–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki Y, Morimoto I, Kusano M, Hosokawa M, Itoh F, Yanagihara K et al. (2001). Mutational analysis of the beta-catenin gene in gastric carcinomas. Tumour Biol 22: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Toyota M, Itoh F, Sasaki Y, Suzuki H, Ogi K et al. (2003). Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res 63: 8606–8613.

    CAS  PubMed  Google Scholar 

  • Stoehr R, Wissmann C, Suzuki H, Knuechel R, Krieg RC, Klopocki E et al. (2004). Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Lab Invest 84: 465–478.

    Article  CAS  PubMed  Google Scholar 

  • Suriano G, Vrcelj N, Senz J, Ferreira P, Masoudi H, Cox K et al. (2005). Beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer. Genes Chromosomes Cancer 42: 238–246.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31: 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD et al. (2004). Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Reed JC . (2001). Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3: E237–E241.

    Article  CAS  PubMed  Google Scholar 

  • Takekawa M, Saito H . (1998). A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95: 521–530.

    Article  CAS  PubMed  Google Scholar 

  • Taketo MM . (2004). Shutting down Wnt signal-activated cancer. Nat Genet 36: 320–322.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Sasaki Y, Satoh A, Ogi K, Kikuchi T, Suzuki H et al. (2003). Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci USA 100: 7818–7823.

    Article  CAS  PubMed  Google Scholar 

  • Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B et al. (2006). Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25: 3479–3488.

    Article  CAS  PubMed  Google Scholar 

  • Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R et al. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154: 515–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo DK, Kim HS, Lee HS, Kang YH, Yang HK, Kim WH . (2001). Altered expression and mutation of beta-catenin gene in gastric carcinomas and cell lines. Int J Cancer 95: 108–113.

    Article  CAS  PubMed  Google Scholar 

  • Yokozaki H . (2000). Molecular characteristics of eight gastric cancer cell lines established in Japan. Pathol Int 50: 767–777.

    Article  CAS  PubMed  Google Scholar 

  • Yuasa Y . (2003). Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 3: 592–600.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr WF Goldman for editing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Suzuki.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nojima, M., Suzuki, H., Toyota, M. et al. Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 26, 4699–4713 (2007). https://doi.org/10.1038/sj.onc.1210259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210259

Keywords

This article is cited by

Search

Quick links