Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity

Abstract

Photodynamic therapy is a promising antitumor treatment modality approved for the management of both early and advanced tumors. The mechanisms of its antitumor action include generation of singlet oxygen and reactive oxygen species that directly damage tumor cells and tumor vasculature. A number of mechanisms seem to be involved in the protective responses to PDT that include activation of transcription factors, heat shock proteins, antioxidant enzymes and antiapoptotic pathways. Elucidation of these mechanisms might result in the design of more effective combination strategies to improve the antitumor efficacy of PDT. Using DNA microarray analysis to identify stress-related genes induced by Photofrin-mediated PDT in colon adenocarcinoma C-26 cells, we observed a marked induction of heme oxygenase-1 (HO-1). Induction of HO-1 with hemin or stable transfection of C-26 with a plasmid vector encoding HO-1 increased resistance of tumor cells to PDT-mediated cytotoxicity. On the other hand, zinc (II) protoporphyrin IX, an HO-1 inhibitor, markedly augmented PDT-mediated cytotoxicity towards C-26 and human ovarian carcinoma MDAH2774 cells. Neither bilirubin, biliverdin nor carbon monoxide, direct products of HO-1 catalysed heme degradation, was responsible for cytoprotection. Importantly, desferrioxamine, a potent iron chelator significantly potentiated cytotoxic effects of PDT. Altogether our results indicate that HO-1 is involved in an important protective mechanism against PDT-mediated phototoxicity and administration of HO-1 inhibitors might be an effective way to potentiate antitumor effectiveness of PDT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CO:

carbon monoxide

COX:

cyclooxygenase

DFO:

desferrioxamine

HO-1:

heme oxygenase-1

Hsp:

heat shock protein

PBS:

phosphate-buffered saline

PDT:

photodynamic therapy

ROS:

reactive oxygen species

SOD:

superoxide dismutase

Zn(II)PPIX:

zinc (II) propoporphyrin IX

References

  • Abels C . (2004). Photochem Photobiol Sci 3: 765–771.

  • Almeida RD, Manadas BJ, Carvalho AP, Duarte CB . (2004). Biochim Biophys Acta 1704: 59–86.

  • Bachowski GJ, Korytowski W, Girotti AW . (1994). Lipids 29: 449–459.

  • Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F et al. (1992). J Biol Chem 267: 18148–18153.

  • Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B et al. (2005). Clin Cancer Res 11: 3790–3798.

  • Bressoud D, Jomini V, Tyrrell RM . (1992). J Photochem Photobiol B 14: 311–318.

  • Castano AP, Demidova TN, Hamblin MR . (2004). Photodiagn Photodyn Ther 1: 279–293.

  • Cisowski J, Loboda A, Jozkowicz A, Chen S, Agarwal A, Dulak J . (2005). Biochem Biophys Res Commun 326: 670–676.

  • Deshane J, Wright M, Agarwal A . (2005). Acta Biochim Pol 52: 273–284.

  • Dolgachev V, Oberley LW, Huang TT, Kraniak JM, Tainsky MA, Hanada K et al. (2005). Biochem Biophys Res Commun 332: 411–417.

  • Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D et al. (1999). Proc Natl Acad Sci USA 96: 2445–2450.

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M et al. (1998). J Natl Cancer Inst 90: 889–905.

  • Dulak J, Jozkowicz A . (2003). Acta Biochim Pol 50: 31–47.

  • Dulak J, Jozkowicz A, Foresti R, Kasza A, Frick M, Huk I et al. (2002). Antioxidant Redox Signal 4: 229–240.

  • Fang J, Sawa T, Akaike T, Greish K, Maeda H . (2004). Int J Cancer 109: 1–8.

  • Ferrario A, Von Tiehl K, Wong S, Luna M, Gomer CJ . (2002). Cancer Res 62: 3956–3961.

  • Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ . (2000). Cancer Res 60: 4066–4069.

  • Frankel D, Mehindate K, Schipper HM . (2000). J Cell Physiol 185: 80–86.

  • Golab J, Nowis D, Skrzycki M, Czeczot H, Baranczyk-Kuzma A, Wilczynski GM et al. (2003). J Biol Chem 278: 407–414.

  • Golab J, Olszewska D, Mroz P, Kozar K, Kaminski R, Jalili A et al. (2002). Clin Cancer Res 8: 1265–1270.

  • Golab J, Wilczynski G, Zagozdzon R, Stoklosa T, Dabrowska A, Rybczynska J et al. (2000). Br J Cancer 82: 1485–1491.

  • Gomer CJ, Luna M, Ferrario A, Rucker N . (1991). Photochem Photobiol 53: 275–279.

  • Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM . (1996). Cancer Res 56: 2355–2360.

  • Granville DJ, Carthy CM, Jiang H, Levy JG, McManus BM, Matroule JY et al. (2000). Blood 95: 256–262.

  • Granville DJ, Jiang H, An MT, Levy JG, McManus BM, Hunt DW . (1999). Br J Cancer 79: 95–100.

  • Grune T, Klotz LO, Gieche J, Rudeck M, Sies H . (2001). Free Radic Biol Med 30: 1243–1253.

  • Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR et al. (2003). J Biol Chem 278: 52231–52239.

  • Jalili A, Makowski M, Switaj T, Nowis D, Wilczynski GM, Wilczek E et al. (2004). Clin Cancer Res 10: 4498–4508.

  • Kapitulnik J . (2004). Mol Pharmacol 66: 773–779.

  • Keyse SM, Tyrrell RM . (1989). Proc Natl Acad Sci USA 86: 99–103.

  • Kick G, Messer G, Plewig G, Kind P, Goetz AE . (1996). Br J Cancer 74: 30–36.

  • Kliukiene R, Maroziene A, Nivinskas H, Cenas N, Kirveliene V, Juodka B . (1997). Biochem Mol Biol Int 41: 707–713.

  • Koukourakis MI, Giatromanolaki A, Skarlatos J, Corti L, Blandamura S, Piazza M et al. (2001). Cancer Res 61: 1830–1832.

  • Lee PJ, Alam J, Wiegand GW, Choi AM . (1996). Proc Natl Acad Sci USA 93: 10393–10398.

  • Lin F, Girotti AW . (1996). Cancer Res 56: 4636–4643.

  • Luna MC, Wong S, Gomer CJ . (1994). Cancer Res 54: 1374–1380.

  • Makowski M, Grzela T, Niderla J, M LA, Mroz P, Kopee M et al. (2003). Clin Cancer Res 9: 5417–5422.

  • McBride G . (2002). J Natl Cancer Inst 94: 1740–1742.

  • Minetti M, Mallozzi C, Di Stasi AM, Pietraforte D . (1998). Arch Biochem Biophys 352: 165–174.

  • Motterlini R, Foresti R, Bassi R, Calabrese V, Clark JE, Green CJ . (2000). J Biol Chem 275: 13613–13620.

  • Nowis D, Makowski M, Stoklosa T, Legat M, Issat T, Golab J . (2005). Acta Biochim Pol 52: 339–352.

  • Oberdanner CB, Plaetzer K, Kiesslich T, Krammer B . (2005). Photochem Photobiol 81: 609–613.

  • Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K et al. (2004). Cell 119: 529–542.

  • Poss KD, Tonegawa S . (1997). Proc Natl Acad Sci USA 94: 10925–10930.

  • Rasch MH, Tijssen K, Lagerberg JW, Corver WE, VanSteveninck J, Dubbelman TM . (1997). Photochem Photobiol 66: 209–213.

  • Ryter SW, Otterbein LE . (2004). Bioessays 26: 270–280.

  • Sahoo SK, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T et al. (2002). Bioconjug Chem 13: 1031–1038.

  • Sharman WM, Allen CM, van Lier JE . (2000). Methods Enzymol 319: 376–400.

  • Shibahara S, Muller RM, Taguchi H . (1987). J Biol Chem 262: 12889–12892.

  • Shiraishi F, Visner GA, Nick HS, Agarwal A . (2001). Anal Biochem 289: 303–305.

  • Srivastava M, Ahmad N, Gupta S, Mukhtar H . (2001). J Biol Chem 276: 15481–15488.

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN . (1987). Science 235: 1043–1046.

  • Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F et al. (2003). Br J Cancer 88: 902–909.

  • Turkseven S, Kruger A, Mingone CJ, Kaminski P, Inaba M, Rodella LF et al. (2005). Am J Physiol Heart Circ Physiol 289: H701–H707.

  • Verwanger T, Sanovic R, Aberger F, Frischauf AM, Krammer B . (2002). Int J Oncol 21: 1353–1359.

  • Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ et al. (2003). Pharmacol Rev 55: 551–571.

  • Wang HP, Hanlon JG, Rainbow AJ, Espiritu M, Singh G . (2002). Photochem Photobiol 76: 98–104.

  • Wild PJ, Krieg RC, Seidl J, Stoehr R, Reher K, Hofmann C et al. (2005). Mol Cancer Ther 4: 516–528.

  • Woods JA, Traynor NJ, Brancaleon L, Moseley H . (2004). Photochem Photobiol 79: 105–113.

  • Xue LY, Qiu Y, He J, Kung HJ, Oleinick NL . (1999). Oncogene 18: 3391–3398.

  • Zhuang S, Kochevar IE . (2003). Photochem Photobiol 78: 361–371.

Download references

Acknowledgements

This work was supported in part by Grants: 1M19/M2, 1M19/NK and 1M19/W1 from the Medical University of Warsaw; Grants PBZ-KBN-107-/P04/2004 and PBZ-KBN-091/P05/54 from the State Committee for Scientific Research, Poland. Marcin Makowski is a recipient of the Foundation for Polish Science Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Gołab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowis, D., Legat, M., Grzela, T. et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 25, 3365–3374 (2006). https://doi.org/10.1038/sj.onc.1209378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209378

Keywords

This article is cited by

Search

Quick links