Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The phosphoinositide 3-kinase/Akt pathway is essential for the retinoic acid-induced differentiation of F9 cells

Abstract

Retinoic acid (RA) induces cell growth arrest and differentiation through two families of nuclear receptors, the RARs and the RXRs. The phosphoinositide 3-kinase (PI3K)/Akt pathway also plays key roles in these processes, that is, cell cycle progression, cell differentiation and cell survival. We report that, in mouse embryocarcinoma cells (F9 cells), RA induces an early activation of PI3K and Akt via an increase in the expression of the p85α regulatory subunit. This effect is followed by an inhibition of Akt. Both effects require the integrity of the RA pathway as they are not observed in RA-resistant RARγ null cells. We propose a model through which RA induces a biphasic regulation of Akt with an activation participitating to the differentiation process, followed by an inhibition, which has been correlated to the RA-induced growth arrest.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Antonyak MA, Boehm JE, Cerione RA . (2002). J Biol Chem 277: 14712–14716.

  • Bastien J, Rochette-Egly C . (2004). Gene 328: 1–16.

  • Blume-Jensen P, Hunter T . (2001). Nature 411: 355–365.

  • Bour G, Plassat JL, Bauer A, Lalevee S, Rochette-Egly C . (2005). J Biol Chem 280: 17027–17037.

  • Bovenzi V, Le NL, Cote S, Sinnett D, Momparler LF, Momparler RL . (1999). Anticancer Drugs 10: 471–476.

  • Brazil DP, Yang ZZ, Hemmings BA . (2004). Trends Biochem Sci 29: 233–242.

  • Cabane C, Coldefy AS, Yeow K, Derijard B . (2004). Cell Signal 16: 1405–1415.

  • Calautti E, Li J, Saoncella S, Brissette JL, Goetinck PF . (2005). J Biol Chem 280: 32856–32865.

  • Cantley LC . (2002). Science 296: 1655–1657.

  • Carter CA . (2003). Exp Mol Pathol 75: 34–44.

  • Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T et al. (2001). Genes Dev 15: 2203–2208.

  • Comer FI, Parent CA . (2002). Cell 109: 541–544.

  • Datta SR, Brunet A, Greenberg ME . (1999). Genes Dev 13: 2905–2927.

  • del Rincon SV, Guo Q, Morelli C, Shiu HY, Surmacz E, Miller WH . (2004). Oncogene 23: 9269–9279.

  • del Rincon SV, Rousseau C, Samanta R, Miller Jr WH . (2003). Oncogene 22: 3353–3360.

  • Di-Poi N, Tan NS, Michalik L, Wahli W, Desvergne B . (2002). Mol Cell 10: 721–733.

  • Farias EF, Marzan C, Mira YLR . (2005). Oncogene 24: 1598–1606.

  • Feng J, Park J, Cron P, Hess D, Hemmings BA . (2004). J Biol Chem 279: 41189–41196.

  • Gonzalez I, Tripathi G, Carter EJ, Cobb LJ, Salih DA, Lovett FA et al. (2004). Mol Cell Biol 24: 3607–3622.

  • Gratacap MP, Payrastre B, Viala C, Mauco G, Plantavid M, Chap H . (1998). J Biol Chem 273: 24314–24321.

  • Hanada M, Feng J, Hemmings BA . (2004). Biochim Biophys Acta 1697: 3–16.

  • Ishida S, Shigemoto-Mogami Y, Shinozaki Y, Kagechika H, Shudo K, Ozawa S et al. (2004). Biochem Pharmacol 68: 2177–2186.

  • Kang S, Bader AG, Zhao L, Vogt PK . (2005). Cell Cycle 4: 578–581.

  • Kocki J, Constantinou M, Cioch M, Lancut M, Kaluzewski B, Dmoszynska A et al. (2003). J Appl Genet 44: 553–556.

  • Lal L, Li Y, Smith J, Sassano A, Uddin S, Parmar S et al. (2005). Blood 105: 1669–1677.

  • Laudet V, Gronemeyer H . (2002). Nuclear Receptor Factsbook. Acedemic Press: London.

    Google Scholar 

  • Leslie NR, Downes CP . (2002). Cell Signal 14: 285–295.

  • Lopez-Carballo G, Moreno L, Masia S, Perez P, Barettino D . (2002). J Biol Chem 277: 25297–25304.

  • Maira SM, Galetic I, Brazil DP, Kaech S, Ingley E, Thelen M et al. (2001). Science 294: 374–380.

  • Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G et al. (2003). Mol Cancer Res 1: 234–246.

  • Oridate N, Esumi N, Lotan D, Hing WK, Rochette-Egly C, Chambon P et al. (1996). Oncogene 12: 2019–2028.

  • Payrastre B, Missy K, Giuriato S, Bodin S, Plantavid M, Gratacap M . (2001). Cell Signal 13: 377–387.

  • Puscheck EE, Pergament E, Patel Y, Dreschler J, Rappolee DA . (1998). Mol Reprod Dev 49: 386–393.

  • Rieusset J, Roques M, Bouzakri K, Chevillotte E, Vidal H . (2001). FEBS Lett 502: 98–102.

  • Rochette-Egly C, Chambon P . (2001). Histol Histopathol 16: 909–922.

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Science 307: 1098–1101.

  • Sarker KP, Lee KY . (2004). Oncogene 23: 6064–6070.

  • Scheid MP, Huber M, Damen JE, Hughes M, Kang V, Neilsen P et al. (2002). J Biol Chem 277: 9027–9035.

  • Taneja R, Rochette-Egly C, Plassat JL, Penna L, Gaub MP, Chambon P . (1997). EMBO J 16: 6452–6465.

  • Tari AM, Lim SJ, Hung MC, Esteva FJ, Lopez-Berestein G . (2002). Oncogene 21: 5224–5232.

  • Ueki K, Fruman DA, Yballe CM, Fasshauer M, Klein J, Asano T et al. (2003). J Biol Chem 278: 48453–48466.

  • Vivanco I, Sawyers CL . (2002). Nat Rev Cancer 2: 489–501.

Download references

Acknowledgements

We are grateful to Bristol-Myers Squibb Pharmaceutical Research Institute for the gifts of the synthetic retinoids and to Professor P Chambon for providing the RARγ-−/− F9 cells. Special thanks to Gaétan Bour, Sebastien Lalevée and Nathalie Bruck for critically reading the manuscript. We also thank members of the cell culture facility for help. Caroline Pendaries and Gaétan Chicanne are strongly aknowledged for their help. This work was supported by funds from the Centre National de la Recherche scientifique (CNRS), the Institut National de la Recherche Médicale (INSERM) and the Association pour la Recherche sur le Cancer (ARC). JB was supported by the Ministère de la Recherche et de l’Enseignement Supérieur, by the Ligue Nationale contre le Cancer and by the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Rochette-Egly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastien, J., Plassat, JL., Payrastre, B. et al. The phosphoinositide 3-kinase/Akt pathway is essential for the retinoic acid-induced differentiation of F9 cells. Oncogene 25, 2040–2047 (2006). https://doi.org/10.1038/sj.onc.1209241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209241

Keywords

This article is cited by

Search

Quick links