Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation

Abstract

The suppressors of cytokine signaling (SOCS) are critically involved in the regulation of cellular proliferation, survival, and apoptosis via cytokine-induced JAK/STAT signaling. SOCS-1 silencing by aberrant DNA methylation contributes to oncogenesis in various B-cell neoplasias and carcinomas. Recently, we showed an alternative loss of SOCS-1 function due to deleterious SOCS-1 mutations in a major subset of primary mediastinal B-cell lymphoma (PMBL) and in the PMBL line MedB-1, and a biallelic SOCS-1 deletion in PMBL line Karpas1106P. For both cell lines our previous data demonstrated retarded JAK2 degradation and sustained phospho-JAK2 action leading to enhanced DNA binding of phospho-STAT5. Here, we analysed SOCS-1 in laser-microdissected Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL). We detected SOCS-1 mutations in HRS cells of eight of 19 cHL samples and in three of five Hodgkin lymphoma (HL)-derived cell lines by sequencing analysis. Moreover, we found a significant association between mutated SOCS-1 of isolated HRS cells and nuclear phospho-STAT5 accumulation in HRS cells of cHL tumor tissue (P<0.01). Collectively, these findings support the concept that PMBL and cHL share many overlapping features, and that defective tumor suppressor gene SOCS-1 triggers an oncogenic pathway operative in both lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Barth TF, Leithäuser F, Joos S, Bentz M, Möller P . (2002). Lancet Oncol 3: 229–234.

  • Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G et al. (2003). Blood 101: 3681–3686.

  • Chen CY, Tsay W, Tang JL, Shen HL, Lin SW, Huang SY et al. (2003). Genes Chrom Cancer 37: 300–305.

  • Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL . (2004a). Blood 103: 4630–4635.

  • Chim CS, Wong KY, Loong F, Srivastava G . (2004b). Leukemia 18: 356–358.

  • Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. (1997). Nature 387: 921–924.

  • Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG . (2003). Blood 101: 2784–2788.

  • Guiter C, Dusanter-Fourt I, Copie-Bergman C, Boulland ML, Le Gouvello S, Gaulard P et al. (2004). Blood 104: 543–549.

  • Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS et al. (1998). Proc Natl Acad Sci USA 95: 114–119.

  • James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. (2005). Nature 434: 1144–1148.

  • Joos S, Granzow M, Holtgreve-Grez H, Siebert R, Harder L, Martin-Subero JL et al. (2003). Int J Cancer 103: 489–495.

  • Joos S, Otano-Joos MI, Ziegler S, Brüderlein S, du Manoir S, Bentz M et al. (1996). Blood 87: 1571–1578.

  • Komazaki T, Nagai H, Emi M, Terada Y, Yabe A, Jin E et al. (2004). Jpn J Clin Oncol 34: 191–194.

  • Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. (2005). N Engl J Med 352: 1744–1746.

  • Krebs DL, Hilton DJ . (2001). Stem Cells 19: 378–387.

  • Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I et al. (2001). Blood 98: 762–770.

  • Melzner I, Bucur AJ, Brüderlein S, Dorsch K, Hasel C, Barth TF et al. (2005). Blood 105: 2535–2542.

  • Melzner I, Weniger MA, Bucur AJ, Brüderlein S, Dorsch K, Hasel C et al. (2006). Int J Cancer 118: 1941–1944.

  • Ritz O, Leithäuser F, Hasel C, Brüderlein S, Ushmorov A, Möller P et al. (2005). J Pathol 205: 336–348.

  • Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD et al. (2003). J Exp Med 198: 851–862.

  • Rottapel R, Ilangumaran S, Neale C, La Rose J, Ho JM, Nguyen MH et al. (2002). Oncogene 21: 4351–4362.

  • Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L et al. (2003). Blood 102: 3871–3879.

  • Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, Kapp U et al. (2002). Blood 99: 618–626.

  • Sutherland KD, Lindeman GJ, Choong DY, Wittlin S, Brentzell L, Phillips W et al. (2004). Oncogene 23: 7726–7733.

  • Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE et al. (2001). Nat Gen 28: 29–35.

Download references

Acknowledgements

We thank Michaela Buck for excellent technical assistance. This work was supported by a grant of the Deutsche Krebshilfe, Mildred Scheel Stiftung (Grant number 106367) to TFE Barth and P Möller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weniger, M., Melzner, I., Menz, C. et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25, 2679–2684 (2006). https://doi.org/10.1038/sj.onc.1209151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209151

Keywords

This article is cited by

Search

Quick links