Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Serotonergic vulnerability and depression: assumptions, experimental evidence and implications

Abstract

In recent years, the term serotonergic vulnerability (SV) has been used in scientific literature, but so far it has not been explicitly defined. This review article attempts to elucidate the SV concept. SV can be defined as increased sensitivity to natural or experimental alterations of the serotonergic (5-HTergic) system. Several factors that may disrupt the 5-HTergic system and hence contribute to SV are discussed, including genetic factors, female gender, personality characteristics, several types of stress and drug use. It is explained that SV can be demonstrated by means of manipulations of the 5-HTergic system, such as 5-HT challenges or acute tryptophan depletion (ATD). Results of 5-HT challenge studies and ATD studies are discussed in terms of their implications for the concept of SV. A model is proposed in which a combination of various factors that may compromise 5-HT functioning in one person can result in depression or other 5-HT-related pathology. By manipulating 5-HT levels, in particular with ATD, vulnerable subjects may be identified before pathology initiates, providing the opportunity to take preventive action. Although it is not likely that this model applies to all cases of depression, or is able to identify all vulnerable subjects, the strength of the model is that it may enable identification of vulnerable subjects before the 5-HT related pathology occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK et al. Preclinical models: status of basic research in depression. Biol Psychiatry 2002; 52: 503–528.

    Article  PubMed  Google Scholar 

  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 1994.

  3. Heninger GR, Charney DS, Sternberg DE . Serotonergic function in depression. Prolactin response to intravenous tryptophan in depressed patients and healthy subjects. Arch Gen Psychiatry 1984; 41: 398–402.

    Article  CAS  PubMed  Google Scholar 

  4. Heninger GR . Indoleamines: the role of serotonin in clinical disorders. In: Bloom FE, Kupfer DJ (eds). Psychopharmacology: The Fourth Generation of Progress. Raven Press, Ltd.: New York, 1995, pp 471–482.

    Google Scholar 

  5. Naughton M, Mulrooney JB, Leonard BE . A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol 2000; 15: 397–415.

    Article  CAS  PubMed  Google Scholar 

  6. Stanford SC . 5-Hydroxytryptamine. In: Webster RA (ed). Neurotransmitters, Drugs and Brain Function. John Wiley & Sons Ltd: New York, 2001, pp 187–209.

    Chapter  Google Scholar 

  7. Leonard BE . Fundamentals of Psychopharmacology, 2nd edn. Wiley & Sons: New York, 1997.

    Google Scholar 

  8. Jacobs BL, Fornal CA . Serotonin and behavior. In: Bloom FE, Kupfer DJ (eds). Psychopharmacology: The Fourth Generation of Progress. Raven Press, Ltd.: New York, 1995, pp 461–469.

    Google Scholar 

  9. Coppen A, Eccleston E, Craft I, Bye P . Letter: total and free plasma-tryptophan concentration and oral contraception. Lancet 1973; 2: 1498.

    Article  CAS  PubMed  Google Scholar 

  10. Cowen PJ, Parry-Billings M, Newsholme EA . Decreased plasma tryptophan levels in major depression. J Affect Disord 1989; 16: 27–31.

    Article  CAS  PubMed  Google Scholar 

  11. Asberg M, Thoren P, Traskman L, Bertilsson L, Ringberger V . ‘Serotonin depression’ – a biochemical subgroup within the affective disorders? Science 1976; 191: 478–480.

    Article  CAS  PubMed  Google Scholar 

  12. Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J et al. Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 2000; 57: 174–180.

    Article  CAS  PubMed  Google Scholar 

  13. Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ et al. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999; 46: 1375–1387.

    Article  CAS  PubMed  Google Scholar 

  14. Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 1998; 44: 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  15. Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C . Acute tryptophan depletion in healthy young women with a family history of major affective disorder. Psychol Med 1999; 29: 35–46.

    Article  CAS  PubMed  Google Scholar 

  16. Klaassen T, Riedel WJ, van Someren A, Deutz NE, Honig A, van Praag HM . Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biol Psychiatry 1999; 46: 489–497.

    Article  CAS  PubMed  Google Scholar 

  17. Moreno FA, Gelenberg AJ, Heninger GR, Potter RL, McKnight KM, Allen J et al. Tryptophan depletion and depressive vulnerability. Biol Psychiatry 1999; 46: 498–505.

    Article  CAS  PubMed  Google Scholar 

  18. Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O et al. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 2004; 61: 765–773.

    Article  CAS  PubMed  Google Scholar 

  19. Kapitany T, Schindl M, Schindler SD, Hesselmann B, Fureder T, Barnas C et al. The citalopram challenge test in patients with major depression and in healthy controls. Psychiatry Res 1999; 88: 75–88.

    Article  CAS  PubMed  Google Scholar 

  20. Flory JD, Mann JJ, Manuck SB, Muldoon MF . Recovery from major depression is not associated with normalization of serotonergic function. Biol Psychiatry 1998; 43: 320–326.

    Article  CAS  PubMed  Google Scholar 

  21. Bhagwagar Z, Whale R, Cowen PJ . State and trait abnormalities in serotonin function in major depression. Br J Psychiatry 2002; 180: 24–28.

    Article  PubMed  Google Scholar 

  22. van Praag HM . Can stress cause depression? Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 891–907.

    Article  CAS  PubMed  Google Scholar 

  23. Maes M, Meltzer HY . The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds). Psychopharmacology: The Fourth Generation of Progress. Raven Press, Ltd.: New York, 1995, pp 933–944.

    Google Scholar 

  24. Booij L, Van der Does W, Benkelfat C, Bremner JD, Cowen PJ, Fava M et al. Predictors of mood response to acute tryptophan depletion. A reanalysis. Neuropsychopharmacology 2002; 27: 852–861.

    Article  CAS  PubMed  Google Scholar 

  25. van Praag HM . Faulty cortisol/serotonin interplay. Psychopathological and biological characterisation of a new, hypothetical depression subtype (SeCA depression). Psychiatry Res 1996; 65: 143–157.

    Article  CAS  PubMed  Google Scholar 

  26. Neumeister A, Konstantinidis A, Stastny J, Schwarz MJ, Vitouch O, Willeit M et al. Association between serotonin transporter gene promoter polymorphism (5HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Arch Gen Psychiatry 2002; 59: 613–620.

    Article  CAS  PubMed  Google Scholar 

  27. Sobczak S, Honig A, Nicolson NA, Riedel WJ . Effects of acute tryptophan depletion on mood and cortisol release in first-degree relatives of type I and type II bipolar patients and healthy matched controls. Neuropsychopharmacology 2002; 27: 834–842.

    Article  CAS  PubMed  Google Scholar 

  28. Sobczak S, Riedel WJ, Booij I, Aan Het Rot M, Deutz NE, Honig A . Cognition following acute tryptophan depletion: difference between first-degree relatives of bipolar disorder patients and matched healthy control volunteers. Psychol Med 2002; 32: 503–515.

    Article  CAS  PubMed  Google Scholar 

  29. Riedel WJ, Klaassen T, Schmitt JA . Tryptophan, mood, and cognitive function. Brain Behav Immun 2002; 16: 581–589.

    Article  CAS  PubMed  Google Scholar 

  30. Aberg-Wistedt A, Hasselmark L, Stain-Malmgren R, Aperia B, Kjellman BF, Mathe AA . Serotonergic ‘vulnerability’ in affective disorder: a study of the tryptophan depletion test and relationships between peripheral and central serotonin indexes in citalopram-responders. Acta Psychiatr Scand 1998; 97: 374–380.

    Article  CAS  PubMed  Google Scholar 

  31. Kendler KS, Davis CG, Kessler RC . The familial aggregation of common psychiatric and substance use disorders in the National Comorbidity Survey: a family history study. Br J Psychiatry 1997; 170: 541–548.

    Article  CAS  PubMed  Google Scholar 

  32. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  PubMed  Google Scholar 

  33. Sullivan PF, Wells JE, Joyce PR, Bushnell JA, Mulder RT, Oakley-Browne MA . Family history of depression in clinic and community samples. J Affect Disord 1996; 40: 159–168.

    Article  CAS  PubMed  Google Scholar 

  34. Michalak EE, Wilkinson C, Hood K, Dowrick C . Seasonal and nonseasonal depression: how do they differ? Symptom profile, clinical and family history in a general population sample. J Affect Disord 2002; 69: 185–192.

    Article  PubMed  Google Scholar 

  35. Stallings MC, Cherny SS, Young SE, Miles DR, Hewitt JK, Fulker DW . The familial aggregation of depressive symptoms, antisocial behavior, and alcohol abuse. Am J Med Genet 1997; 74: 183–191.

    Article  CAS  PubMed  Google Scholar 

  36. Cadoret RJ, Winokur G, Langbehn D, Troughton E, Yates WR, Stewart MA . Depression spectrum disease, I: the role of gene-environment interaction. Am J Psychiatry 1996; 153: 892–899.

    Article  CAS  PubMed  Google Scholar 

  37. Beck O, Borg S, Edman G, Fyro B, Oxenstierna G, Sedvall G . 5-hydroxytryptophol in human cerebrospinal fluid: conjugation, concentration gradient, relationship to 5-hydroxyindoleacetic acid, and influence of hereditary factors. J Neurochem 1984; 43: 58–61.

    Article  CAS  PubMed  Google Scholar 

  38. Oxenstierna G, Edman G, Iselius L, Oreland L, Ross SB, Sedvall G . Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals – a genetic study. J Psychiatr Res 1986; 20: 19–29.

    Article  CAS  PubMed  Google Scholar 

  39. Mann JJ, Huang YY, Underwood MD, Kassir SA, Oppenheim S, Kelly TM et al. A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch Gen Psychiatry 2000; 57: 729–738.

    Article  CAS  PubMed  Google Scholar 

  40. Lesch KP . Serotonergic gene expression and depression: implications for developing novel antidepressants. J Affect Disord 2001; 62: 57–76.

    Article  CAS  PubMed  Google Scholar 

  41. Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996; 66: 2621–2624.

    Article  CAS  PubMed  Google Scholar 

  42. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  43. Ohara K, Nagai M, Tsukamoto T, Tani K, Suzuki Y . Functional polymorphism in the serotonin transporter promoter at the SLC6A4 locus and mood disorders. Biol Psychiatry 1998; 44: 550–554.

    Article  CAS  PubMed  Google Scholar 

  44. Minov C, Baghai TC, Schule C, Zwanzger P, Schwarz MJ, Zill P et al. Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 2001; 303: 119–122.

    Article  CAS  PubMed  Google Scholar 

  45. Joiner Jr TE, Johnson F, Soderstrom K, Brown JS . Is there an association between serotonin transporter gene polymorphism and family history of depression? J Affect Disord 2003; 77: 273–275.

    Article  CAS  PubMed  Google Scholar 

  46. Collier DA, Stober G, Li T, Heils A, Catalano M, Di Bella D et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry 1996; 1: 453–460.

    CAS  PubMed  Google Scholar 

  47. Lesch KP, Mossner R . Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol Psychiatry 1998; 44: 179–192.

    Article  CAS  PubMed  Google Scholar 

  48. Hoefgen B, Schulze TG, Ohlraun S, von Widdern O, Hofels S, Gross M et al. The power of sample size and homogenous sampling: association between the 5-HTTLPR serotonin transporter polymorphism and major depressive disorder. Biol Psychiatry 2005; 57: 247–251.

    Article  CAS  PubMed  Google Scholar 

  49. Moreno FA, Rowe DC, Kaiser B, Chase D, Michaels T, Gelernter J et al. Association between a serotonin transporter promoter region polymorphism and mood response during tryptophan depletion. Mol Psychiatry 2002; 7: 213–216.

    Article  CAS  PubMed  Google Scholar 

  50. Lesch KP . Variation of serotonergic gene expression: neurodevelopment and the complexity of response to psychopharmacologic drugs. Eur Neuropsychopharmacol 2001; 11: 457–474.

    Article  CAS  PubMed  Google Scholar 

  51. Murphy DL, Li Q, Engel S, Wichems C, Andrews A, Lesch KP et al. Genetic perspectives on the serotonin transporter. Brain Res Bull 2001; 56: 487–494.

    Article  CAS  PubMed  Google Scholar 

  52. Tsai SJ, Wang YC, Hong CJ, Chiu HJ . Association study of oestrogen receptor alpha gene polymorphism and suicidal behaviours in major depressive disorder. Psychiatr Genet 2003; 13: 19–22.

    Article  PubMed  Google Scholar 

  53. Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ . Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 2002; 7: 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  54. Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB . The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berlin) 2004; 174: 525–529.

    Article  CAS  Google Scholar 

  55. Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000; 23: 587–590.

    Article  CAS  PubMed  Google Scholar 

  56. Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M . Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 3: 508–511.

    Article  CAS  PubMed  Google Scholar 

  57. Neumeister A, Young T, Stastny J . Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter. Psychopharmacology (Berln) 2004; 174: 512–524.

    CAS  Google Scholar 

  58. Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003; 23: 8788–8799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu S, Comings DE . A common C-1018G polymorphism in the human 5-HT1A receptor gene. Psychiatr Genet 1999; 9: 105–106.

    Article  CAS  PubMed  Google Scholar 

  60. Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA et al. Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 2004; 24: 589–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harvey M, Shink E, Tremblay M, Gagne B, Raymond C, Labbe M et al. Support for the involvement of TPH2 gene in affective disorders. Mol Psychiatry 2004; 9: 980–981.

    Article  CAS  PubMed  Google Scholar 

  62. Bellivier F, Leboyer M, Courtet P, Buresi C, Beaufils B, Samolyk D et al. Association between the tryptophan hydroxylase gene and manic-depressive illness. Arch Gen Psychiatry 1998; 55: 33–37.

    Article  CAS  PubMed  Google Scholar 

  63. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG . Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 2004; 305: 217.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005; 45: 11–16.

    Article  CAS  PubMed  Google Scholar 

  66. Zill P, Baghai TC, Zwanzger P, Schule C, Eser D, Rupprecht R et al. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry 2004; 9: 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  67. Cervo L, Canetta A, Calcagno E, Burbassi S, Sacchetti G, Caccia S et al. Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J Neurosci 2005; 25: 8165–8172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loehlin JC, McCrae RR, Costa PTJ, John OP . Heritables of common and measure-specific components of the big five personality factors. J Res Personality 1998; 32: 431–453.

    Article  Google Scholar 

  69. Boyce P, Parker G, Barnett B, Cooney M, Smith F . Personality as a vulnerability factor to depression. Br J Psychiatry 1991; 159: 106–114.

    Article  CAS  PubMed  Google Scholar 

  70. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ . A longitudinal twin study of personality and major depression in women. Arch Gen Psychiatry 1993; 50: 853–862.

    Article  CAS  PubMed  Google Scholar 

  71. Hodgins S, Ellenbogen M . Neuroticism and depression. Br J Psychiatry 2003; 182: 79–80; author reply 80.

    Article  CAS  PubMed  Google Scholar 

  72. Duggan C, Sham P, Lee A, Minne C, Murray R . Neuroticism: a vulnerability marker for depression evidence from a family study. J Affect Disord 1995; 35: 139–143.

    Article  CAS  PubMed  Google Scholar 

  73. Kendler KS, Kuhn J, Prescott CA . The interrelationship of neuroticism, sex, and stressful life events in the prediction of episodes of major depression. Am J Psychiatry 2004; 161: 631–636.

    Article  PubMed  Google Scholar 

  74. Brown SL, Svrakic DM, Przybeck TR, Cloninger CR . The relationship of personality to mood and anxiety states: a dimensional approach. J Psychiatr Res 1992; 26: 197–211.

    Article  CAS  PubMed  Google Scholar 

  75. Joffe RT, Bagby RM, Levitt AJ, Regan JJ, Parker JD . The Tridimensional Personality Questionnaire in major depression. Am J Psychiatry 1993; 150: 959–960.

    Article  CAS  PubMed  Google Scholar 

  76. Strakowski SM, Dunayevich E, Keck Jr PE, McElroy SL . Affective state dependence of the Tridimensional Personality Questionnaire. Psychiatry Res 1995; 57: 209–214.

    Article  CAS  PubMed  Google Scholar 

  77. Richter J, Eisemann M, Richter G . Temperament and character during the course of unipolar depression among inpatients. Eur Arch Psychiatry Clin Neurosci 2000; 250: 40–47.

    Article  CAS  PubMed  Google Scholar 

  78. Nelson EC, Cloninger CR, Przybeck TR, Csernansky JG . Platelet serotonergic markers and Tridimensional Personality Questionnaire measures in a clinical sample. Biol Psychiatry 1996; 40: 271–278.

    Article  CAS  PubMed  Google Scholar 

  79. Hansenne M, Ansseau M . Harm avoidance and serotonin. Biol Psychol 1999; 51: 77–81.

    Article  CAS  PubMed  Google Scholar 

  80. Black KJ, Sheline YI . Personality disorder scores improve with effective pharmacotherapy of depression. J Affect Disord 1997; 43: 11–18.

    Article  CAS  PubMed  Google Scholar 

  81. Bond AJ . Neurotransmitters, temperament and social functioning. Eur Neuropsychopharmacol 2001; 11: 261–274.

    Article  CAS  PubMed  Google Scholar 

  82. Tse WS, Bond AJ . Serotonergic involvement in the psychosocial dimension of personality. J Psychopharmacol 2001; 15: 195–198.

    Article  CAS  PubMed  Google Scholar 

  83. Knutson B, Wolkowitz OM, Cole SW, Chan T, Moore EA, Johnson RC et al. Selective alteration of personality and social behavior by serotonergic intervention. Am J Psychiatry 1998; 155: 373–379.

    Article  CAS  PubMed  Google Scholar 

  84. Dunner DL, Schmaling KB, Hendrickson H, Becker J, Lehman A, Bea C . Cognitive therapy versus fluoxetine in the treatment of dysthymic disorder. Depression 1996; 4: 34–41.

    Article  CAS  PubMed  Google Scholar 

  85. Chien AJ, Dunner DL . The Tridimensional Personality Questionnaire in depression: state versus trait issues. J Psychiatr Res 1996; 30: 21–27.

    Article  CAS  PubMed  Google Scholar 

  86. Hansenne M, Pitchot W, Moreno AG, Reggers J, Machurot PY, Ansseau M . Harm avoidance dimension of the Tridimensional Personality Questionnaire and serotonin-1A activity in depressed patients. Biol Psychiatry 1997; 42: 959–961.

    Article  CAS  PubMed  Google Scholar 

  87. Peirson AR, Heuchert JW, Thomala L, Berk M, Plein H, Cloninger CR . Relationship between serotonin and the temperament and character inventory. Psychiatry Res 1999; 89: 29–37.

    Article  CAS  PubMed  Google Scholar 

  88. Moresco FM, Dieci M, Vita A, Messa C, Gobbo C, Galli L et al. In vivo serotonin 5HT(2A) receptor binding and personality traits in healthy subjects: a positron emission tomography study. Neuroimage 2002; 17: 1470–1478.

    Article  CAS  PubMed  Google Scholar 

  89. Asberg M, Traskman L, Thoren P . 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry 1976; 33: 1193–1197.

    Article  CAS  PubMed  Google Scholar 

  90. Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK . Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 1983; 33: 2609–2614.

    Article  CAS  PubMed  Google Scholar 

  91. van Praag HM, Kahn RS, Asnis GM, Wetzler S, Brown SL, Bleich A et al. Denosologization of biological psychiatry or the specificity of 5-HT disturbances in psychiatric disorders. J Affect Disord 1987; 13: 1–8.

    Article  CAS  PubMed  Google Scholar 

  92. Asberg M . Neurotransmitters and suicidal behavior. The evidence from cerebrospinal fluid studies. Ann NY Acad Sci 1997; 836: 158–181.

    Article  CAS  PubMed  Google Scholar 

  93. Higley JD, Suomi SJ, Linnoila M . CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology (Berlin) 1991; 103: 551–556.

    Article  CAS  Google Scholar 

  94. Higley JD, Thompson WW, Champoux M, Goldman D, Hasert MF, Kraemer GW et al. Paternal and maternal genetic and environmental contributions to cerebrospinal fluid monoamine metabolites in rhesus monkeys (Macaca mulatta). Arch Gen Psychiatry 1993; 50: 615–623.

    Article  CAS  PubMed  Google Scholar 

  95. Higley JD, Linnoila M . Low central nervous system serotonergic activity is traitlike and correlates with impulsive behavior. A nonhuman primate model investigating genetic and environmental influences on neurotransmission. Ann NY Acad Sci 1997; 836: 39–56.

    Article  CAS  PubMed  Google Scholar 

  96. Piccinelli M, Wilkinson G . Gender differences in depression. Critical review. Br J Psychiatry 2000; 177: 486–492.

    Article  CAS  PubMed  Google Scholar 

  97. Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996; 276: 293–299.

    Article  CAS  PubMed  Google Scholar 

  98. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB . Sex and depression in the National Comorbidity Survey. I: lifetime prevalence, chronicity and recurrence. J Affect Disord 1993; 29: 85–96.

    Article  CAS  PubMed  Google Scholar 

  99. Nolen-Hoeksema S . Gender differences in depression. Am Psychol Soc 2001; 10: 173–176.

    Google Scholar 

  100. Kornstein SG . Gender, depression, and antidepressant treatment. Primary Psychiatry 2003; 10: 58–61.

    Google Scholar 

  101. Dominguez R, Cruz-Morales SE, Carvalho MC, Xavier M, Brandao ML . Sex differences in serotonergic activity in dorsal and median raphe nucleus. Physiol Behav 2003; 80: 203–210.

    Article  CAS  PubMed  Google Scholar 

  102. Carlsson M, Carlsson A . A regional study of sex differences in rat brain serotonin. Prog Neuropsychopharmacol Biol Psychiatry 1988; 12: 53–61.

    Article  CAS  PubMed  Google Scholar 

  103. Haleem DJ, Kennett GA, Curzon G . Hippocampal 5-hydroxytryptamine synthesis is greater in female rats than in males and more decreased by the 5-HT1A agonist 8-OH-DPAT. J Neural Transm Gen Sect 1990; 79: 93–101.

    Article  CAS  PubMed  Google Scholar 

  104. Rosencrans JA . Differences in brain area 5-hydroxytryptamine turnover and rearing behavior in rats and mice of both sexes. Eur J Pharmacol 1970; 9: 379–382.

    Article  Google Scholar 

  105. Klink R, Robichaud M, Debonnel G . Gender and gonadal status modulation of dorsal raphe nucleus serotonergic neurons. Part I: effects of gender and pregnancy. Neuropharmacology 2002; 43: 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  106. Agren H, Mefford IN, Rudorfer MV, Linnoila M, Potter WZ . Interacting neurotransmitter systems. A non-experimental approach to the 5HIAA-HVA correlation in human CSF. J Psychiatr Res 1986; 20: 175–193.

    Article  CAS  PubMed  Google Scholar 

  107. Young SN, Gauthier S, Anderson GM, Purdy WC . Tryptophan, 5-hydroxyindolacetic acid and indoleacetic acid in human cerebrospinal fluid: interrelationship and the influence of age, sex, epilepsy and anticonvulsant drugs. J Neurol Neurosurg Psychiatry 1980; 43: 438–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Biver F, Lotstra F, Monclus M, Wikler D, Damhaut P, Mendlewicz J et al. Sex difference in 5HT2 receptor in the living human brain. Neurosci Lett 1996; 204: 25–28.

    Article  CAS  PubMed  Google Scholar 

  109. Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C et al. Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 1997; 94: 5308–5313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Staley JK, Sanacora G, Tamagnan G, Maciejewski PK, Malison RT, Berman RM et al. Sex differences in diencephalon serotonin transporter availability in major depression. Biol Psychiatry 2006; 59: 40–47.

    Article  CAS  PubMed  Google Scholar 

  111. Osterlund MK, Hurd YL . Estrogen receptors in the human forebrain and the relation to neuropsychiatric disorders. Prog Neurobiol 2001; 64: 251–267.

    Article  CAS  PubMed  Google Scholar 

  112. Gundlah C, Simon LD, Auerbach SB . Differences in hypothalamic serotonin between estrous phases and gender: an in vivo microdialysis study. Brain Res 1998; 785: 91–96.

    Article  CAS  PubMed  Google Scholar 

  113. Maswood S, Truitt W, Hotema M, Caldarola-Pastuszka M, Uphouse L . Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors. Brain Res 1999; 831: 146–154.

    Article  CAS  PubMed  Google Scholar 

  114. Bethea CL, Gundlah C, Mirkes SJ . Ovarian steroid action in the serotonin neural system of macaques. Novartis Found Symp 2000; 230: 112–130; discussion 130–133.

    CAS  PubMed  Google Scholar 

  115. Weigel NL . Steroid hormone receptors and their regulation by phosphorylation. Biochem J 1996; 319(Part 3): 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sumner BE, Fink G . Testosterone as well as estrogen increases serotonin2A receptor mRNA and binding site densities in the male rat brain. Brain Res Mol Brain Res 1998; 59: 205–214.

    Article  CAS  PubMed  Google Scholar 

  117. Fink G, Sumner BE, McQueen JK, Wilson H, Rosie R . Sex steroid control of mood, mental state and memory. Clin Exp Pharmacol Physiol 1998; 25: 764–775.

    Article  CAS  PubMed  Google Scholar 

  118. McEwen BS, Alves SE . Estrogen actions in the central nervous system. Endocr Rev 1999; 20: 279–307.

    CAS  PubMed  Google Scholar 

  119. Joffe H, Cohen LS . Estrogen, serotonin, and mood disturbance: where is the therapeutic bridge? Biol Psychiatry 1998; 44: 798–811.

    Article  CAS  PubMed  Google Scholar 

  120. Ostlund H, Keller E, Hurd YL . Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann NY Acad Sci 2003; 1007: 54–63.

    Article  CAS  PubMed  Google Scholar 

  121. Imwalle DB, Gustafsson JA, Rissman EF . Lack of functional estrogen receptor beta influences anxiety behavior and serotonin content in female mice. Physiol Behav 2005; 84: 157–163.

    Article  CAS  PubMed  Google Scholar 

  122. Rubinow DR, Schmidt PJ, Roca CA . Estrogen-serotonin interactions: implications for affective regulation. Biol Psychiatry 1998; 44: 839–850.

    Article  CAS  PubMed  Google Scholar 

  123. Markus CR . Interactions between stress, food and mood. In: Watson DaD F (ed). Performance Functional Foods. Woodhead Publishing: Cambridge, 2003, pp 5–20.

    Chapter  Google Scholar 

  124. Lopez JF, Akil H, Watson SJ . Neural circuits mediating stress. Biol Psychiatry 1999; 46: 1461–1471.

    Article  CAS  PubMed  Google Scholar 

  125. Connor TJ, Leonard BE . Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 1998; 62: 583–606.

    Article  CAS  PubMed  Google Scholar 

  126. Kofman O . The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci Biobehav Rev 2002; 26: 457–470.

    Article  CAS  PubMed  Google Scholar 

  127. Huizink AC, Mulder EJ, Buitelaar JK . Prenatal stress and risk for psychopathology: specific effects or induction of general susceptibility? Psychol Bull 2004; 130: 115–142.

    Article  PubMed  Google Scholar 

  128. Malarkey WB, Pearl DK, Demers LM, Kiecolt-Glaser JK, Glaser R . Influence of academic stress and season on 24-hour mean concentrations of ACTH, cortisol, and beta-endorphin. Psychoneuroendocrinology 1995; 20: 499–508.

    Article  CAS  PubMed  Google Scholar 

  129. Anisman H, Merali Z . Cytokines, stress and depressive illness: brain-immune interactions. Ann Med 2003; 35: 2–11.

    Article  CAS  PubMed  Google Scholar 

  130. Prickaerts J, Steckler T . Effects of glucocorticoids on emotion and cognitive processes in animals. In: Steckler T, Kalin NH, Reul JMHM (eds). Handbook of Stress and the Brain. Elsevier: Amsterdam/London, 2005, pp 359–385.

    Google Scholar 

  131. de Kloet ER, Joels M, Holsboer F . Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–475.

    Article  CAS  PubMed  Google Scholar 

  132. Sachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukushima DK, Gallagher TF . Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 1973; 28: 19–24.

    Article  CAS  PubMed  Google Scholar 

  133. Holsboer F . The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23: 477–501.

    Article  CAS  PubMed  Google Scholar 

  134. Davis S, Heal DJ, Stanford SC . Long-lasting effects of an acute stress on the neurochemistry and function of 5-hydroxytryptaminergic neurones in the mouse brain. Psychopharmacology (Berlin) 1995; 118: 267–272.

    Article  CAS  Google Scholar 

  135. Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O . Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 2003; 27: 119–127.

    Article  CAS  PubMed  Google Scholar 

  136. Young AH, Goodwin GM, Dick H, Fink G . Effects of glucocorticoids on 5-HT1A presynaptic function in the mouse. Psychopharmacology (Berlin) 1994; 114: 360–364.

    Article  CAS  Google Scholar 

  137. Meijer OC, de Kloet ER . Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. Eur J Pharmacol 1994; 266: 255–261.

    Article  CAS  PubMed  Google Scholar 

  138. Anisman H, Zalcman S, Zacharko RM . The impact of stressors on immune and central neurotransmitter activity: bidirectional communication. Rev Neurosci 1993; 4: 147–180.

    Article  CAS  PubMed  Google Scholar 

  139. Porter RJ, Gallagher P, Watson S, Young AH . Corticosteroid-serotonin interactions in depression: a review of the human evidence. Psychopharmacology (Berlin) 2004; 173: 1–17.

    Article  CAS  Google Scholar 

  140. Pariante CM, Makoff A, Lovestone S, Feroli S, Heyden A, Miller AH et al. Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol 2001; 134: 1335–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Robertson DA, Beattie JE, Reid IC, Balfour DJ . Regulation of corticosteroid receptors in the rat brain: the role of serotonin and stress. Eur J Neurosci 2005; 21: 1511–1520.

    Article  CAS  PubMed  Google Scholar 

  142. Lai M, McCormick JA, Chapman KE, Kelly PA, Seckl JR, Yau JL . Differential regulation of corticosteroid receptors by monoamine neurotransmitters and antidepressant drugs in primary hippocampal culture. Neuroscience 2003; 118: 975–984.

    Article  CAS  PubMed  Google Scholar 

  143. Semont A, Fache M, Ouafik L, Hery M, Faudon M, Hery F . Effect of serotonin inhibition on glucocorticoid and mineralocorticoid expression in various brain structures. Neuroendocrinology 1999; 69: 121–128.

    Article  CAS  PubMed  Google Scholar 

  144. Watanabe Y, Gould E, McEwen BS . Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992; 588: 341–345.

    Article  CAS  PubMed  Google Scholar 

  145. Malberg JE, Duman RS . Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003; 28: 1562–1571.

    Article  CAS  PubMed  Google Scholar 

  146. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E . Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997; 17: 2492–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Magarinos AM, Verdugo JM, McEwen BS . Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 1997; 94: 14002–14008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McEwen BS, Magarinos AM . Stress effects on morphology and function of the hippocampus. Ann NY Acad Sci 1997; 821: 271–284.

    Article  CAS  PubMed  Google Scholar 

  149. Sapolsky RM . Why stress is bad for your brain. Science 1996; 273: 749–750.

    Article  CAS  PubMed  Google Scholar 

  150. Gould E, Tanapat P . Stress and hippocampal neurogenesis. Biol Psychiatry 1999; 46: 1472–1479.

    Article  CAS  PubMed  Google Scholar 

  151. McEwen BS . Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann NY Acad Sci 2004; 1032: 1–7.

    Article  PubMed  Google Scholar 

  152. Modell S, Lauer CJ, Schreiber W, Huber J, Krieg JC, Holsboer F . Hormonal response pattern in the combined DEX-CRH test is stable over time in subjects at high familial risk for affective disorders. Neuropsychopharmacology 1998; 18: 253–262.

    Article  CAS  PubMed  Google Scholar 

  153. McEwen BS . Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22: 105–122.

    Article  CAS  PubMed  Google Scholar 

  154. de Kloet ER, Sibug RM, Helmerhorst FM, Schmidt M . Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev 2005; 29: 271–281.

    Article  CAS  PubMed  Google Scholar 

  155. Morley-Fletcher S, Darnaudery M, Koehl M, Casolini P, Van Reeth O, Maccari S . Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Res 2003; 989: 246–251.

    Article  CAS  PubMed  Google Scholar 

  156. Watson JB, Mednick SA, Huttunen M, Wang X . Prenatal teratogens and the development of adult mental illness. Dev Psychopathol 1999; 11: 457–466.

    Article  CAS  PubMed  Google Scholar 

  157. Weinstock M . Does prenatal stress impair coping and regulation of hypothalamic–pituitary–adrenal axis? Neurosci Biobehav Rev 1997; 21: 1–10.

    Article  CAS  PubMed  Google Scholar 

  158. Van den Hove DL, Steinbusch HW, Scheepens A, Van de Berg WD, Kooiman LA, Boosten BJ et al. Prenatal stress and neonatal rat brain development. Neuroscience 2006; 137: 145–155.

    Article  CAS  PubMed  Google Scholar 

  159. Maccari S, Piazza PV, Kabbaj M, Barbazanges A, Simon H, Le Moal M . Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J Neurosci 1995; 15: 110–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hayashi A, Nagaoka M, Yamada K, Ichitani Y, Miake Y, Okado N . Maternal stress induces synaptic loss and developmental disabilities of offspring. Int J Dev Neurosci 1998; 16: 209–216.

    Article  CAS  PubMed  Google Scholar 

  161. Deminiere JM, Piazza PV, Guegan G, Abrous N, Maccari S, Le Moal M et al. Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Res 1992; 586: 135–139.

    Article  CAS  PubMed  Google Scholar 

  162. Dugovic C, Maccari S, Weibel L, Turek FW, Van Reeth O . High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci 1999; 19: 8656–8664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Poltyrev T, Weinstock M . Effect of prenatal stress on opioid component of exploration in different experimental situations. Pharmacol Biochem Behav 1997; 58: 387–393.

    Article  CAS  PubMed  Google Scholar 

  164. Vallee M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S . Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 1997; 17: 2626–2636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bhatnagar S, Lee TM, Vining C . Prenatal stress differentially affects habituation of corticosterone responses to repeated stress in adult male and female rats. Horm Behav 2005; 47: 430–438.

    Article  CAS  PubMed  Google Scholar 

  166. Carroll BJ, Curtis GC, Mendels J . Neuroendocrine regulation in depression. II. Discrimination of depressed from nondepressed patients. Arch Gen Psychiatry 1976; 33: 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  167. Mortola JF, Liu JH, Gillin JC, Rasmussen DD, Yen SS . Pulsatile rhythms of adrenocorticotropin (ACTH) and cortisol in women with endogenous depression: evidence for increased ACTH pulse frequency. J Clin Endocrinol Metab 1987; 65: 962–968.

    Article  CAS  PubMed  Google Scholar 

  168. Gaspar P, Cases O, Maroteaux L . The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2003; 4: 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  169. Whitaker-Azmitia PM . Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int J Dev Neurosci 2005; 23: 75–83.

    Article  CAS  PubMed  Google Scholar 

  170. Feenstra MG, van Galen H, Te Riele PJ, Botterblom MH, Mirmiran M . Decreased hypothalamic serotonin levels in adult rats treated neonatally with clomipramine. Pharmacol Biochem Behav 1996; 55: 647–652.

    Article  CAS  PubMed  Google Scholar 

  171. Shemer A, Whitaker-Azmitia PM, Azmitia EC . Effects of prenatal 5-methoxytryptamine and parachlorophenylalanine on serotonergic uptake and behavior in the neonatal rat. Pharmacol Biochem Behav 1988; 30: 847–851.

    Article  CAS  PubMed  Google Scholar 

  172. Shemer AV, Azmitia EC, Whitaker-Azmitia PM . Dose-related effects of prenatal 5-methoxytryptamine (5-MT) on development of serotonin terminal density and behavior. Brain Res Dev Brain Res 1991; 59: 59–63.

    Article  CAS  PubMed  Google Scholar 

  173. Huether G, Thomke F, Adler L . Administration of tryptophan-enriched diets to pregnant rats retards the development of the serotonergic system in their offspring. Brain Res Dev Brain Res 1992; 68: 175–181.

    Article  CAS  PubMed  Google Scholar 

  174. Akbari HM, Kramer HK, Whitaker-Azmitia PM, Spear LP, Azmitia EC . Prenatal cocaine exposure disrupts the development of the serotonergic system. Brain Res 1992; 572: 57–63.

    Article  CAS  PubMed  Google Scholar 

  175. Yan QS . Reduced serotonin release and serotonin uptake sites in the rat nucleus accumbens and striatum after prenatal cocaine exposure. Brain Res 2002; 929: 59–69.

    Article  CAS  PubMed  Google Scholar 

  176. Koprich JB, Chen EY, Kanaan NM, Campbell NG, Kordower JH, Lipton JW . Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) alters exploratory behavior, reduces monoamine metabolism, and increases forebrain tyrosine hydroxylase fiber density of juvenile rats. Neurotoxicol Teratol 2003; 25: 509–517.

    Article  CAS  PubMed  Google Scholar 

  177. Whitaker-Azmitia PM, Zhang X, Clarke C . Effects of gestational exposure to monoamine oxidase inhibitors in rats: preliminary behavioral and neurochemical studies. Neuropsychopharmacology 1994; 11: 125–132.

    Article  CAS  PubMed  Google Scholar 

  178. Owesson CA, Hopwood SE, Callado LF, Seif I, McLaughlin DP, Stamford JA . Altered presynaptic function in monoaminergic neurons of monoamine oxidase-A knockout mice. Eur J Neurosci 2002; 15: 1516–1522.

    Article  PubMed  Google Scholar 

  179. Cabrera-Vera TM, Garcia F, Pinto W, Battaglia G . Effect of prenatal fluoxetine (Prozac) exposure on brain serotonin neurons in prepubescent and adult male rat offspring. J Pharmacol Exp Ther 1997; 280: 138–145.

    CAS  PubMed  Google Scholar 

  180. Cabrera-Vera TM, Battaglia G . Prenatal exposure to fluoxetine (Prozac) produces site-specific and age-dependent alterations in brain serotonin transporters in rat progeny: evidence from autoradiographic studies. J Pharmacol Exp Ther 1998; 286: 1474–1481.

    CAS  PubMed  Google Scholar 

  181. Slotkin TA, Barnes GA, McCook EC, Seidler FJ . Programming of brainstem serotonin transporter development by prenatal glucocorticoids. Brain Res Dev Brain Res 1996; 93: 155–161.

    Article  CAS  PubMed  Google Scholar 

  182. Muneoka K, Mikuni M, Ogawa T, Kitera K, Kamei K, Takigawa M et al. Prenatal dexamethasone exposure alters brain monoamine metabolism and adrenocortical response in rat offspring. Am J Physiol 1997; 273: R1669–R1675.

    CAS  PubMed  Google Scholar 

  183. Owen D, Andrews MH, Matthews SG . Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neurosci Biobehav Rev 2005; 29: 209–226.

    Article  CAS  PubMed  Google Scholar 

  184. Heim C, Nemeroff CB . The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 1999; 46: 1509–1522.

    Article  CAS  PubMed  Google Scholar 

  185. Heim C, Nemeroff CB . The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 2001; 49: 1023–1039.

    Article  CAS  PubMed  Google Scholar 

  186. Heim C, Plotsky PM, Nemeroff CB . Importance of studying the contributions of early adverse experience to neurobiological findings in depression. Neuropsychopharmacology 2004; 29: 641–648.

    Article  PubMed  Google Scholar 

  187. Vazquez DM, Eskandari R, Zimmer CA, Levine S, Lopez JF . Brain 5-HT receptor system in the stressed infant rat: implications for vulnerability to substance abuse. Psychoneuroendocrinology 2002; 27: 245–272.

    Article  CAS  PubMed  Google Scholar 

  188. Meaney MJ . Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 2001; 24: 1161–1192.

    Article  CAS  PubMed  Google Scholar 

  189. Gunnar MR, Donzella B . Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology 2002; 27: 199–220.

    Article  CAS  PubMed  Google Scholar 

  190. Sapolsky RM, Meaney MJ . Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res 1986; 396: 64–76.

    Article  CAS  PubMed  Google Scholar 

  191. Gunnar MR . Quality of early care and buffering of neuroendocrine stress reactions: potential effects on the developing human brain. Prev Med 1998; 27: 208–211.

    Article  CAS  PubMed  Google Scholar 

  192. Gunnar MR, Brodersen L, Krueger K, Rigatuso J . Dampening of adrenocortical responses during infancy: normative changes and individual differences. Child Dev 1996; 67: 877–889.

    Article  CAS  PubMed  Google Scholar 

  193. Ramsay DS, Lewis M . Developmental change in infant cortisol and behavioral response to inoculation. Child Dev 1994; 65: 1491–1502.

    Article  CAS  PubMed  Google Scholar 

  194. Huot RL, Plotsky PM, Lenox RH, McNamara RK . Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Res 2002; 950: 52–63.

    Article  CAS  PubMed  Google Scholar 

  195. Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji C et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 1996; 18: 49–72.

    Article  CAS  PubMed  Google Scholar 

  196. Papaioannou A, Gerozissis K, Prokopiou A, Bolaris S, Stylianopoulou F . Sex differences in the effects of neonatal handling on the animal's response to stress and the vulnerability for depressive behaviour. Behav Brain Res 2002; 129: 131–139.

    Article  CAS  PubMed  Google Scholar 

  197. Ruedi-Bettschen D, Pedersen EM, Feldon J, Pryce CR . Early deprivation under specific conditions leads to reduced interest in reward in adulthood in Wistar rats. Behav Brain Res 2005; 156: 297–310.

    Article  PubMed  Google Scholar 

  198. Ruedi-Bettschen D, Feldon J, Pryce CR . The impaired coping induced by early deprivation is reversed by chronic fluoxetine treatment in adult fischer rats. Behav Pharmacol 2004; 15: 413–421.

    Article  CAS  PubMed  Google Scholar 

  199. Bhatnagar S, Meaney MJ . Hypothalamic-pituitary-adrenal function in chronic intermittently cold-stressed neonatally handled and non handled rats. J Neuroendocrinol 1995; 7: 97–108.

    Article  CAS  PubMed  Google Scholar 

  200. Huot RL, Gonzalez ME, Ladd CO, Thrivikraman KV, Plotsky PM . Foster litters prevent hypothalamic–pituitary–adrenal axis sensitization mediated by neonatal maternal separation. Psychoneuroendocrinology 2004; 29: 279–289.

    Article  CAS  PubMed  Google Scholar 

  201. Sutanto W, Rosenfeld P, de Kloet ER, Levine S . Long-term effects of neonatal maternal deprivation and ACTH on hippocampal mineralocorticoid and glucocorticoid receptors. Brain Res Dev Brain Res 1996; 92: 156–163.

    Article  CAS  PubMed  Google Scholar 

  202. Karten YJ, Olariu A, Cameron HA . Stress in early life inhibits neurogenesis in adulthood. Trends Neurosci 2005; 28: 171–172.

    Article  CAS  PubMed  Google Scholar 

  203. Sapolsky RM . Is impaired neurogenesis relevant to the affective symptoms of depression? Biol Psychiatry 2004; 56: 137–139.

    Article  PubMed  Google Scholar 

  204. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mirescu C, Peters JD, Gould E . Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 2004; 7: 841–846.

    Article  CAS  PubMed  Google Scholar 

  206. Anisman H, Merali Z, Hayley S . Sensitization associated with stressors and cytokine treatments. Brain Behav Immun 2003; 17: 86–93.

    Article  CAS  PubMed  Google Scholar 

  207. Anisman H, Hayley S, Turrin N, Merali Z . Cytokines as a stressor: implications for depressive illness. Int J Neuropsychopharmacol 2002; 5: 357–373.

    Article  CAS  PubMed  Google Scholar 

  208. Capuron L, Dantzer R . Cytokines and depression: the need for a new paradigm. Brain Behav Immun 2003; 17(Suppl 1): S119–S124.

    Article  CAS  PubMed  Google Scholar 

  209. Leonard BE, Song C . Stress, depression, and the role of cytokines. Adv Exp Med Biol 1999; 461: 251–265.

    Article  CAS  PubMed  Google Scholar 

  210. Watkins LR, Nguyen KT, Lee JE, Maier SF . Dynamic regulation of proinflammatory cytokines. Adv Exp Med Biol 1999; 461: 153–178.

    Article  CAS  PubMed  Google Scholar 

  211. Schiepers OJ, Wichers MC, Maes M . Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 201–217.

    Article  CAS  PubMed  Google Scholar 

  212. Kronfol Z, Silva Jr J, Greden J, Dembinski S, Gardner R, Carroll B . Impaired lymphocyte function in depressive illness. Life Sci 1983; 33: 241–247.

    Article  CAS  PubMed  Google Scholar 

  213. Irwin M, Gillin JC . Impaired natural killer cell activity among depressed patients. Psychiatry Res 1987; 20: 181–182.

    Article  CAS  PubMed  Google Scholar 

  214. Maes M . Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19: 11–38.

    Article  CAS  PubMed  Google Scholar 

  215. Maes M . Major depression and activation of the inflammatory response system. Adv Exp Med Biol 1999; 461: 25–46.

    Article  CAS  PubMed  Google Scholar 

  216. Nunes SO, Reiche EM, Morimoto HK, Matsuo T, Itano EN, Xavier EC et al. Immune and hormonal activity in adults suffering from depression. Braz J Med Biol Res 2002; 35: 581–587.

    Article  CAS  PubMed  Google Scholar 

  217. Yirmiya R . Depression in medical illness: the role of the immune system. West J Med 2000; 173: 333–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wright CE, Strike PC, Brydon L, Steptoe A . Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav Immun 2005; 19: 345–350.

    Article  CAS  PubMed  Google Scholar 

  219. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 2001; 58: 445–452.

    Article  CAS  PubMed  Google Scholar 

  220. Strike PC, Wardle J, Steptoe A . Mild acute inflammatory stimulation induces transient negative mood. J Psychosom Res 2004; 57: 189–194.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Bonaccorso S, Puzella A, Marino V, Pasquini M, Biondi M, Artini M et al. Immunotherapy with interferon-alpha in patients affected by chronic hepatitis C induces an intercorrelated stimulation of the cytokine network and an increase in depressive and anxiety symptoms. Psychiatry Res 2001; 105: 45–55.

    Article  CAS  PubMed  Google Scholar 

  222. Yirmiya R, Weidenfeld J, Pollak Y, Morag M, Morag A, Avitsur R et al. Cytokines, ‘depression due to a general medical condition,’ and antidepressant drugs. Adv Exp Med Biol 1999; 461: 283–316.

    Article  CAS  PubMed  Google Scholar 

  223. Plata-Salaman CR . Cytokines and anorexia: a brief overview. Semin Oncol 1998; 25: 64–72.

    CAS  PubMed  Google Scholar 

  224. Wichers MC, Maes M . The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J Psychiatry Neurosci 2004; 29: 11–17.

    PubMed  PubMed Central  Google Scholar 

  225. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 1992; 115(Part 5): 1249–1273.

    Article  PubMed  Google Scholar 

  226. Stone TW, Darlington LG . Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002; 1: 609–620.

    Article  CAS  PubMed  Google Scholar 

  227. Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpe S . Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci 2002; 71: 1837–1848.

    Article  CAS  PubMed  Google Scholar 

  228. Kubera M, Maes M . Serotonin-immune interactions in major depression. In: Patterson PH, Kordon C, Christen Y (eds). Neuroimmune Interactions in Neurologic and Psychiatric Disorders. Springer Verlag: New York, 2000, pp 79–88.

    Chapter  Google Scholar 

  229. Maes M, Capuron L, Ravaud A, Gualde N, Bosmans E, Egyed B et al. Lowered serum dipeptidyl peptidase IV activity is associated with depressive symptoms and cytokine production in cancer patients receiving interleukin-2-based immunotherapy. Neuropsychopharmacology 2001; 24: 130–140.

    Article  CAS  PubMed  Google Scholar 

  230. Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M et al. Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 2002; 22: 86–90.

    Article  CAS  PubMed  Google Scholar 

  231. Bonaccorso S, Marino V, Biondi M, Grimaldi F, Ippoliti F, Maes M . Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J Affect Disord 2002; 72: 237–241.

    Article  CAS  PubMed  Google Scholar 

  232. Ramamoorthy S, Ramamoorthy JD, Prasad PD, Bhat GK, Mahesh VB, Leibach FH et al. Regulation of the human serotonin transporter by interleukin-1 beta. Biochem Biophys Res Commun 1995; 216: 560–567.

    Article  CAS  PubMed  Google Scholar 

  233. Mossner R, Heils A, Stober G, Okladnova O, Daniel S, Lesch KP . Enhancement of serotonin transporter function by tumor necrosis factor alpha but not by interleukin-6. Neurochem Int 1998; 33: 251–254.

    Article  CAS  PubMed  Google Scholar 

  234. Morikawa O, Sakai N, Obara H, Saito N . Effects of interferon-alpha, interferon-gamma and cAMP on the transcriptional regulation of the serotonin transporter. Eur J Pharmacol 1998; 349: 317–324.

    Article  CAS  PubMed  Google Scholar 

  235. McDonald WM, Richard IH, DeLong MR . Prevalence, etiology, and treatment of depression in Parkinson's disease. Biol Psychiatry 2003; 54: 363–375.

    Article  PubMed  Google Scholar 

  236. Hayley S, Poulter MO, Merali Z, Anisman H . The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 2005; 135: 659–678.

    Article  CAS  PubMed  Google Scholar 

  237. Mattson MP, Maudsley S, Martin B . BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004; 27: 589–594.

    Article  CAS  PubMed  Google Scholar 

  238. Hayley S, Kelly O, Anisman H . Murine tumor necrosis factor-alpha sensitizes plasma corticosterone activity and the manifestation of shock: modulation by histamine. J Neuroimmunol 2002; 131: 60–69.

    Article  CAS  PubMed  Google Scholar 

  239. Schmidt ED, Janszen AW, Wouterlood FG, Tilders FJ . Interleukin-1-induced long-lasting changes in hypothalamic corticotropin-releasing hormone (CRH) – neurons and hyperresponsiveness of the hypothalamus-pituitary-adrenal axis. J Neurosci 1995; 15: 7417–7426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Tilders FJ, Schmidt ED, de Goeij DC . Phenotypic plasticity of CRF neurons during stress. Ann NY Acad Sci 1993; 697: 39–52.

    Article  CAS  PubMed  Google Scholar 

  241. Tilders FJ, Schmidt ED . Cross-sensitization between immune and non-immune stressors. A role in the etiology of depression? Adv Exp Med Biol 1999; 461: 179–197.

    Article  CAS  PubMed  Google Scholar 

  242. Simmons DA, Broderick PA . Cytokines, stressors, and clinical depression: augmented adaptation responses underlie depression pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 793–807.

    Article  CAS  PubMed  Google Scholar 

  243. Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P . Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol 1998; 25: 39–47.

    CAS  PubMed  Google Scholar 

  244. Capuron L, Ravaud A . Prediction of the depressive effects of interferon alfa therapy by the patient's initial affective state. N Engl J Med 1999; 340: 1370.

    Article  CAS  PubMed  Google Scholar 

  245. Verheyden SL, Hadfield J, Calin T, Curran HV . Sub-acute effects of MDMA (+/−3,4-methylenedioxymethamphetamine, ‘ecstasy’) on mood: evidence of gender differences. Psychopharmacology (Berlin) 2002; 161: 23–31.

    Article  CAS  Google Scholar 

  246. McKenna DJ, Peroutka SJ . Neurochemistry and neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’). J Neurochem 1990; 54: 14–22.

    Article  CAS  PubMed  Google Scholar 

  247. Schmidt CJ . Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 1987; 240: 1–7.

    CAS  PubMed  Google Scholar 

  248. Ricaurte GA, Yuan J, McCann UD . 3,4-Methylenedioxymethamphetamine (‘ecstasy’)-induced serotonin neurotoxicity: studies in animals. Neuropsychobiology 2000; 42: 5–10.

    Article  CAS  PubMed  Google Scholar 

  249. Reneman L, Booij J, de Bruin K, Reitsma JB, de Wolff FA, Gunning WB et al. Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons. Lancet 2001; 358: 1864–1869.

    Article  CAS  PubMed  Google Scholar 

  250. Semple DM, Ebmeier KP, Glabus MF, O'Carroll RE, Johnstone EC . Reduced in vivo binding to the serotonin transporter in the cerebral cortex of MDMA (‘ecstasy’) users. Br J Psychiatry 1999; 175: 63–69.

    Article  CAS  PubMed  Google Scholar 

  251. Reneman L, Lavalaye J, Schmand B, de Wolff FA, van den Brink W, den Heeten GJ et al. Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy’): preliminary findings. Arch Gen Psychiatry 2001; 58: 901–906.

    Article  CAS  PubMed  Google Scholar 

  252. Curran HV, Verheyden SL . Altered response to tryptophan supplementation after long-term abstention from MDMA (ecstasy) is highly correlated with human memory function. Psychopharmacology (Berlin) 2003; 169: 91–103.

    Article  CAS  Google Scholar 

  253. Hatzidimitriou G, McCann UD, Ricaurte GA . Altered serotonin innervation patterns in the forebrain of monkeys treated with (+/−)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J Neurosci 1999; 19: 5096–5107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Scheffel U, Szabo Z, Mathews WB, Finley PA, Dannals RF, Ravert HT et al. In vivo detection of short- and long-term MDMA neurotoxicity – a positron emission tomography study in the living baboon brain. Synapse 1998; 29: 183–192.

    Article  CAS  PubMed  Google Scholar 

  255. Thomasius R, Petersen K, Buchert R, Andresen B, Zapletalova P, Wartberg L et al. Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users. Psychopharmacology (Berlin) 2003; 167: 85–96.

    Article  CAS  Google Scholar 

  256. Gerra G, Zaimovic A, Ferri M, Zambelli U, Timpano M, Neri E et al. Long-lasting effects of (+/−)3,4-methylenedioxymethamphetamine (ecstasy) on serotonin system function in humans. Biol Psychiatry 2000; 47: 127–136.

    Article  CAS  PubMed  Google Scholar 

  257. de Win MM, Reneman L, Reitsma JB, den Heeten GJ, Booij J, van den Brink W . Mood disorders and serotonin transporter density in ecstasy users – the influence of long-term abstention, dose, and gender. Psychopharmacology (Berlin) 2004; 173: 376–382.

    Article  CAS  Google Scholar 

  258. Reneman L, Booij J, Schmand B, van den Brink W, Gunning B . Memory disturbances in ‘ecstasy’ users are correlated with an altered brain serotonin neurotransmission. Psychopharmacology (Berlin) 2000; 148: 322–324.

    Article  CAS  Google Scholar 

  259. Gerra G, Zaimovic A, Giucastro G, Maestri D, Monica C, Sartori R et al. Serotonergic function after (+/−)3,4-methylene-dioxymethamphetamine (‘ecstasy’) in humans. Int Clin Psychopharmacol 1998; 13: 1–9.

    Article  CAS  PubMed  Google Scholar 

  260. Gamma A, Frei E, Lehmann D, Pascual-Marqui RD, Hell D, Vollenweider FX . Mood state and brain electric activity in ecstasy users. Neuroreport 2000; 11: 157–162.

    Article  CAS  PubMed  Google Scholar 

  261. Gamma A, Buck A, Berthold T, Vollenweider FX . No difference in brain activation during cognitive performance between ecstasy (3,4-methylenedioxymethamphetamine) users and control subjects: a [H2(15)O]-positron emission tomography study. J Clin Psychopharmacol 2001; 21: 66–71.

    Article  CAS  PubMed  Google Scholar 

  262. MacInnes N, Handley SL, Harding GF . Former chronic methylenedioxymethamphetamine (MDMA or ecstasy) users report mild depressive symptoms. J Psychopharmacol 2001; 15: 181–186.

    Article  CAS  PubMed  Google Scholar 

  263. Morgan MJ, McFie L, Fleetwood H, Robinson JA . Ecstasy (MDMA): are the psychological problems associated with its use reversed by prolonged abstinence? Psychopharmacology (Berlin) 2002; 159: 294–303.

    Article  CAS  Google Scholar 

  264. Guillot C, Greenway D . Recreational ecstasy use and depression. J Psychopharmacol 2006; 20: 411–416.

    Article  CAS  PubMed  Google Scholar 

  265. Hesselbrock MN, Meyer RE, Keener JJ . Psychopathology in hospitalized alcoholics. Arch Gen Psychiatry 1985; 42: 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  266. Powell BJ, Penick EC, Othmer E, Bingham SF, Rice AS . Prevalence of additional psychiatric syndromes among male alcoholics. J Clin Psychiatry 1982; 43: 404–407.

    CAS  PubMed  Google Scholar 

  267. LeMarquand D, Pihl RO, Benkelfat C . Serotonin and alcohol intake, abuse, and dependence: findings of animal studies. Biol Psychiatry 1994; 36: 395–421.

    Article  CAS  PubMed  Google Scholar 

  268. LeMarquand D, Pihl RO, Benkelfat C . Serotonin and alcohol intake, abuse, and dependence: clinical evidence. Biol Psychiatry 1994; 36: 326–337.

    Article  CAS  PubMed  Google Scholar 

  269. Oscar-Berman M, Shagrin B, Evert DL, Epstein C . Impairments of brain and behavior: the neurological effects of alcohol. Alcohol Health Res World 1997; 21: 65–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Halliday G, Ellis J, Heard R, Caine D, Harper C . Brainstem serotonergic neurons in chronic alcoholics with and without the memory impairment of Korsakoff's psychosis. J Neuropathol Exp Neurol 1993; 52: 567–579.

    Article  CAS  PubMed  Google Scholar 

  271. Heinz A, Ragan P, Jones DW, Hommer D, Williams W, Knable MB et al. Reduced central serotonin transporters in alcoholism. Am J Psychiatry 1998; 155: 1544–1549.

    Article  CAS  PubMed  Google Scholar 

  272. Badawy AA, Evans M . The role of free serum tryptophan in the biphasic effect of acute ethanol administration on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid. Biochem J 1976; 160: 315–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Morland J, Stowell L, Gjerde H . Ethanol increases rat liver tryptophan oxygenase: evidence for corticosterone mediation. Alcohol 1985; 2: 255–259.

    Article  CAS  PubMed  Google Scholar 

  274. Vaillant GE, Clark W, Cyrus C, Milofsky ES, Kopp J, Wulsin VW et al. Prospective study of alcoholism treatment. Eight-year follow-up. Am J Med 1983; 75: 455–463.

    Article  CAS  PubMed  Google Scholar 

  275. Degenhardt L, Hall W, Lynskey M . Exploring the association between cannabis use and depression. Addiction 2003; 98: 1493–1504.

    Article  PubMed  Google Scholar 

  276. Egashira N, Mishima K, Katsurabayashi S, Yoshitake T, Matsumoto Y, Ishida J et al. Involvement of 5-hydroxytryptamine neuronal system in delta(9)-tetrahydrocannabinol-induced impairment of spatial memory. Eur J Pharmacol 2002; 445: 221–229.

    Article  CAS  PubMed  Google Scholar 

  277. Hill MN, Sun JC, Tse MT, Gorzalka BB . Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. Int J Neuropsychopharmacol 2006; 9: 277–286.

    Article  CAS  PubMed  Google Scholar 

  278. Reith ME, Sershen H, Allen DL, Lajtha A . A portion of [3H]cocaine binding in brain is associated with serotonergic neurons. Mol Pharmacol 1983; 23: 600–606.

    CAS  PubMed  Google Scholar 

  279. Ritz MC, Cone EJ, Kuhar MJ . Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 1990; 46: 635–645.

    Article  CAS  PubMed  Google Scholar 

  280. Levy AD, Baumann MH, Van de Kar LD . Monoaminergic regulation of neuroendocrine function and its modification by cocaine. Front Neuroendocrinol 1994; 15: 85–156.

    Article  CAS  PubMed  Google Scholar 

  281. Gawin FH, Kleber HD . Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 1986; 43: 107–113.

    Article  CAS  PubMed  Google Scholar 

  282. Baumann MH, Rothman RB . Repeated cocaine administration reduces 5-HT1A-mediated prolactin secretion in rats. Neurosci Lett 1995; 193: 9–12.

    Article  CAS  PubMed  Google Scholar 

  283. Baumann MH, Rothman RB . Alterations in serotonergic responsiveness during cocaine withdrawal in rats: similarities to major depression in humans. Biol Psychiatry 1998; 44: 578–591.

    Article  CAS  PubMed  Google Scholar 

  284. Hariri AR, Holmes A . Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 2006; 10: 182–191.

    Article  PubMed  Google Scholar 

  285. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.

    Article  CAS  PubMed  Google Scholar 

  286. Kendler KS, Kuhn JW, Vittum J, Prescott CA, Riley B . The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch Gen Psychiatry 2005; 62: 529–535.

    Article  CAS  PubMed  Google Scholar 

  287. Bennett AJ, Lesch KP, Heils A, Long JC, Lorenz JG, Shoaf SE et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 2002; 7: 118–122.

    Article  CAS  PubMed  Google Scholar 

  288. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002; 297: 400–403.

    Article  CAS  PubMed  Google Scholar 

  289. Hariri AR, Drabant EM, Munoz KE, Kolachana BS, Mattay VS, Egan MF et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch Gen Psychiatry 2005; 62: 146–152.

    Article  CAS  PubMed  Google Scholar 

  290. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 2005; 8: 20–21.

    Article  CAS  PubMed  Google Scholar 

  291. Roiser JP, Cook LJ, Cooper JD, Rubinsztein DC, Sahakian BJ . Association of a functional polymorphism in the serotonin transporter gene with abnormal emotional processing in ecstasy users. Am J Psychiatry 2005; 162: 609–612.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Rubinsztein JS, Rogers RD, Riedel WJ, Mehta MA, Robbins TW, Sahakian BJ . Acute dietary tryptophan depletion impairs maintenance of ‘affective set’ and delayed visual recognition in healthy volunteers. Psychopharmacology (Berlin) 2001; 154: 319–326.

    Article  CAS  Google Scholar 

  293. Heinz A, Jones DW, Mazzanti C, Goldman D, Ragan P, Hommer D et al. A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 2000; 47: 643–649.

    Article  CAS  PubMed  Google Scholar 

  294. Little KY, McLaughlin DP, Zhang L, Livermore CS, Dalack GW, McFinton PR et al. Cocaine, ethanol, and genotype effects on human midbrain serotonin transporter binding sites and mRNA levels. Am J Psychiatry 1998; 155: 207–213.

    Article  CAS  PubMed  Google Scholar 

  295. Schuckit MA, Mazzanti C, Smith TL, Ahmed U, Radel M, Iwata N et al. Selective genotyping for the role of 5-HT2A, 5-HT2C, and GABA alpha 6 receptors and the serotonin transporter in the level of response to alcohol: a pilot study. Biol Psychiatry 1999; 45: 647–651.

    Article  CAS  PubMed  Google Scholar 

  296. Greenberg BD, Li Q, Lucas FR, Hu S, Sirota LA, Benjamin J et al. Association between the serotonin transporter promoter polymorphism and personality traits in a primarily female population sample. Am J Med Genet 2000; 96: 202–216.

    Article  CAS  PubMed  Google Scholar 

  297. Mazzanti CM, Lappalainen J, Long JC, Bengel D, Naukkarinen H, Eggert M et al. Role of the serotonin transporter promoter polymorphism in anxiety-related traits. Arch Gen Psychiatry 1998; 55: 936–940.

    Article  CAS  PubMed  Google Scholar 

  298. Van Gestel S, Forsgren T, Claes S, Del-Favero J, Van Duijn CM, Sluijs S et al. Epistatic effect of genes from the dopamine and serotonin systems on the temperament traits of novelty seeking and harm avoidance. Mol Psychiatry 2002; 7: 448–450.

    Article  CAS  PubMed  Google Scholar 

  299. Kendler KS, Karkowski LM, Prescott CA . Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156: 837–841.

    Article  CAS  PubMed  Google Scholar 

  300. Weiss EL, Longhurst JG, Mazure CM . Childhood sexual abuse as a risk factor for depression in women: psychosocial and neurobiological correlates. Am J Psychiatry 1999; 156: 816–828.

    Article  CAS  PubMed  Google Scholar 

  301. McCormick CM, Smythe JW, Sharma S, Meaney MJ . Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Brain Res Dev Brain Res 1995; 84: 55–61.

    Article  CAS  PubMed  Google Scholar 

  302. Szuran TF, Pliska V, Pokorny J, Welzl H . Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 2000; 71: 353–362.

    Article  CAS  PubMed  Google Scholar 

  303. Weinstock M, Matlina E, Maor GI, Rosen H, McEwen BS . Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat. Brain Res 1992; 595: 195–200.

    Article  CAS  PubMed  Google Scholar 

  304. Cutler S, Nolen-Hoeksema S . Accounting for sex differences in depression through female victimization: childhood sexual abuse. Sex Roles 1991; 24: 425–438.

    Article  Google Scholar 

  305. Matud MP . Gender differencesin stress and coping styles. Personality Individual Differ 2004; 37: 1401–1415.

    Article  Google Scholar 

  306. Grabe HJ, Lange M, Wolff B, Volzke H, Lucht M, Freyberger HJ et al. Mental and physical distress is modulated by a polymorphism in the 5-HT transporter gene interacting with social stressors and chronic disease burden. Mol Psychiatry 2005; 10: 220–224.

    Article  CAS  PubMed  Google Scholar 

  307. Brewin CR . Cognitive processing of adverse experiences. Int Rev Psychiatry 1996; 8: 333–339.

    Article  Google Scholar 

  308. Hanninen V, Aro H . Sex differences in coping and depression among young adults. Soc Sci Med 1996; 43: 1453–1460.

    Article  CAS  PubMed  Google Scholar 

  309. Miller SM, Kirsch N . Sex differences in cognitive coping with stress. In: Barnett RC, Biener L, Baruch GK (eds). Gender & Stress. The Free Press: New York, 1987, pp 278–307.

    Google Scholar 

  310. Ptacek JT, Smith RE, Zanas J . Gender, appraisal, and coping: a longitudinal analysis. J Personal 1992; 60: 747–770.

    Article  Google Scholar 

  311. Shors TJ, Miesegaes G . Testosterone in utero and at birth dictates how stressful experience will affect learning in adulthood. Proc Natl Acad Sci USA 2002; 99: 13955–13960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Wood GE, Beylin AV, Shors TJ . The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning in males versus females. Behav Neurosci 2001; 115: 175–187.

    Article  CAS  PubMed  Google Scholar 

  313. Kennett GA, Chaouloff F, Marcou M, Curzon G . Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. Brain Res 1986; 382: 416–421.

    Article  CAS  PubMed  Google Scholar 

  314. Liechti ME, Gamma A, Vollenweider FX . Gender differences in the subjective effects of MDMA. Psychopharmacology (Berlin) 2001; 154: 161–168.

    Article  CAS  Google Scholar 

  315. McCann UD, Ridenour A, Shaham Y, Ricaurte GA . Serotonin neurotoxicity after (+/−)3,4-methylenedioxymethamphetamine (MDMA; ‘ecstasy’): a controlled study in humans. Neuropsychopharmacology 1994; 10: 129–138.

    Article  CAS  PubMed  Google Scholar 

  316. Brunner D, Hen R . Insights into the neurobiology of impulsive behavior from serotonin receptor knockout mice. Ann NY Acad Sci 1997; 836: 81–105.

    Article  CAS  PubMed  Google Scholar 

  317. Ramboz S, Saudou F, Amara DA, Belzung C, Segu L, Misslin R et al. 5-HT1B receptor knock out – behavioral consequences. Behav Brain Res 1996; 73: 305–312.

    Article  CAS  PubMed  Google Scholar 

  318. Lesch KP, Mossner R . Knockout corner: 5-HT(1A) receptor inactivation: anxiety or depression as a murine experience. Int J Neuropsychopharmcol 1999; 2: 327–331.

    Article  CAS  Google Scholar 

  319. Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R . Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 1999; 21: 52S–60S.

    Article  CAS  PubMed  Google Scholar 

  320. Bell C, Abrams J, Nutt D . Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 2001; 178: 399–405.

    Article  CAS  PubMed  Google Scholar 

  321. Young SN, Leyton M . The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav 2002; 71: 857–865.

    Article  CAS  PubMed  Google Scholar 

  322. Gala RR . The physiology and mechanisms of the stress-induced changes in prolactin secretion in the rat. Life Sci 1990; 46: 1407–1420.

    Article  CAS  PubMed  Google Scholar 

  323. Van de Kar LD, Rittenhouse PA, Li Q, Levy AD . Serotonergic regulation of renin and prolactin secretion. Behav Brain Res 1996; 73: 203–208.

    Article  CAS  PubMed  Google Scholar 

  324. Cowen PJ, Charig EM . Neuroendocrine responses to intravenous tryptophan in major depression. Arch Gen Psychiatry 1987; 44: 958–966.

    Article  CAS  PubMed  Google Scholar 

  325. MacIndoe JH, Turkington RW . Stimulation of human prolactin secretion by intravenous infusion of L-tryptophan. J Clin Invest 1973; 52: 1972–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Clemens JA, Bennett DR, Fuller RW . The effect of a tryptophan-free diet on prolactin and corticosterone release by serotonergic stimuli. Horm Metab Res 1980; 12: 35–38.

    Article  CAS  PubMed  Google Scholar 

  327. Delgado PL, Charney DS, Price LH, Landis H, Heninger GR . Neuroendocrine and behavioral effects of dietary tryptophan restriction in healthy subjects. Life Sci 1989; 45: 2323–2332.

    Article  CAS  PubMed  Google Scholar 

  328. Riedel WJ, Klaassen T, Griez E, Honig A, Menheere PP, van Praag HM . Dissociable hormonal, cognitive and mood responses to neuroendocrine challenge: evidence for receptor-specific serotonergic dysregulation in depressed mood. Neuropsychopharmacology 2002; 26: 358–367.

    Article  CAS  PubMed  Google Scholar 

  329. Charney DS, Heninger GR, Reinhard Jr JF, Sternberg DE, Hafstead KM . The effect of IV L-tryptophan on prolactin, growth hormone, and mood in healthy subjects. Psychopharmacology (Berlin) 1982; 78: 38–43.

    Article  CAS  Google Scholar 

  330. Siever LJ, Murphy DL, Slater S, de la Vega E, Lipper S . Plasma prolactin changes following fenfluramine in depressed patients compared to controls: an evaluation of central serotonergic responsivity in depression. Life Sci 1984; 34: 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  331. Asnis GM, Eisenberg J, van Praag HM, Lemus CZ, Friedman JM, Miller AH . The neuroendocrine response to fenfluramine in depressives and normal controls. Biol Psychiatry 1988; 24: 117–120.

    Article  CAS  PubMed  Google Scholar 

  332. Maes M, D'Hondt P, Suy E, Minner B, Vandervorst C, Raus J . HPA-axis hormones and prolactin responses to dextro-fenfluramine in depressed patients and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 1991; 15: 781–790.

    Article  CAS  PubMed  Google Scholar 

  333. Lichtenberg P, Shapira B, Gillon D, Kindler S, Cooper TB, Newman ME et al. Hormone responses to fenfluramine and placebo challenge in endogenous depression. Psychiatry Res 1992; 43: 137–146.

    Article  CAS  PubMed  Google Scholar 

  334. O'Keane V, Dinan TG . Prolactin and cortisol responses to D-fenfluramine in major depression: evidence for diminished responsivity of central serotonergic function. Am J Psychiatry 1991; 148: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  335. Meltzer HY, Flemming R, Robertson A . The effect of buspirone on prolactin and growth hormone secretion in man. Arch Gen Psychiatry 1983; 40: 1099–1102.

    Article  CAS  PubMed  Google Scholar 

  336. Charney DS, Woods SW, Goodman WK, Heninger GR . Serotonin function in anxiety. II. Effects of the serotonin agonist MCPP in panic disorder patients and healthy subjects. Psychopharmacology (Berlin) 1987; 92: 14–24.

    Article  CAS  Google Scholar 

  337. Laakmann G, Gugath M, Kuss HJ, Zygan K . Comparison of growth hormone and prolactin stimulation induced by chlorimipramine and desimipramine in man in connection with chlorimipramine metabolism. Psychopharmacology (Berlin) 1984; 82: 62–67.

    Article  CAS  Google Scholar 

  338. Golden RN, Ekstrom D, Brown TM, Ruegg R, Evans DL, Haggerty Jr JJ et al. Neuroendocrine effects of intravenous clomipramine in depressed patients and healthy subjects. Am J Psychiatry 1992; 149: 1168–1175.

    Article  CAS  PubMed  Google Scholar 

  339. Reist C, Helmeste D, Albers L, Chhay H, Tang SW . Serotonin indices and impulsivity in normal volunteers. Psychiatry Res 1996; 60: 177–184.

    Article  CAS  PubMed  Google Scholar 

  340. Kavoussi RJ, Kramer J, Hauger RL, Coccaro EF . Prolactin response to D-fenfluramine in outpatients with major depression. Psychiatry Res 1998; 79: 199–205.

    Article  CAS  PubMed  Google Scholar 

  341. Quattrone A, Tedeschi G, Aguglia U, Scopacasa F, Direnzo GF, Annunziato L . Prolactin secretion in man: a useful tool to evaluate the activity of drugs on central 5-hydroxytryptaminergic neurons. Studies with fenfluramine. Br J Clin Pharmacol 1983; 16: 471–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Sher L, Oquendo MA, Li S, Ellis S, Brodsky BS, Malone KM et al. Prolactin response to fenfluramine administration in patients with unipolar and bipolar depression and healthy controls. Psychoneuroendocrinology 2003; 28: 559–573.

    Article  CAS  PubMed  Google Scholar 

  343. Newman ME, Shapira B, Lerer B . Evaluation of central serotonergic function in affective and related disorders by the fenfluramine challenge test: a critical review. Int J Neuropsychopharmcol 1998; 1: 49–69.

    Article  CAS  Google Scholar 

  344. O'Keane V, McLoughlin D, Dinan TG . D-Fenfluramine-induced prolactin and cortisol release in major depression: response to treatment. J Affect Disord 1992; 26: 143–150.

    Article  CAS  PubMed  Google Scholar 

  345. Shapira B, Cohen J, Newman ME, Lerer B . Prolactin response to fenfluramine and placebo challenge following maintenance pharmacotherapy withdrawal in remitted depressed patients. Biol Psychiatry 1993; 33: 531–535.

    Article  CAS  PubMed  Google Scholar 

  346. Kasper S, Vieira A, Schmidt R, Richter P . Multiple hormone responses to stimulation with dl-fenfluramine in patients with major depression before and after antidepressive treatment. Pharmacopsychiatry 1990; 23: 76–84.

    Article  CAS  PubMed  Google Scholar 

  347. Seifritz E, Baumann P, Muller MJ, Annen O, Amey M, Hemmeter U et al. Neuroendocrine effects of a 20-mg citalopram infusion in healthy males. A placebo-controlled evaluation of citalopram as 5-HT function probe. Neuropsychopharmacology 1996; 14: 253–263.

    Article  CAS  PubMed  Google Scholar 

  348. Attenburrow MJ, Mitter PR, Whale R, Terao T, Cowen PJ . Low-dose citalopram as a 5-HT neuroendocrine probe. Psychopharmacology (Berlin) 2001; 155: 323–326.

    Article  CAS  Google Scholar 

  349. Porter RJ, Gallagher P, Watson S, Smith MS, Young AH . Elevated prolactin responses to L-tryptophan infusion in medication-free depressed patients. Psychopharmacology (Berlin) 2003; 169: 77–83.

    Article  CAS  Google Scholar 

  350. Fernstrom JD . Dietary effects on brain serotonin synthesis: relationship to appetite regulation. Am J Clin Nutr 1985; 42: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  351. Fernstrom JD . Aromatic amino acids and monoamine synthesis in the central nervous system: influence of the diet. J Nutr Biochem 1990; 1: 508–517.

    Article  CAS  PubMed  Google Scholar 

  352. Fernstrom JD, Wurtman RJ . Brain serotonin content: increase following ingestion of carbohydrate diet. Science 1971; 174: 1023–1025.

    Article  CAS  PubMed  Google Scholar 

  353. Markus CR, Olivier B, de Haan EH . Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am J Clin Nutr 2002; 75: 1051–1056.

    Article  CAS  PubMed  Google Scholar 

  354. Heine W, Radke M, Wutzke KD, Peters E, Kundt G . Alpha-lactalbumin-enriched low-protein infant formulas: a comparison to breast milk feeding. Acta Paediatr 1996; 85: 1024–1028.

    Article  CAS  PubMed  Google Scholar 

  355. Kalen P, Strecker RE, Rosengren E, Bjorklund A . Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. J Neurochem 1988; 51: 1422–1435.

    Article  CAS  PubMed  Google Scholar 

  356. Orosco M, Rouch C, Beslot F, Feurte S, Regnault A, Dauge V . Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behav Brain Res 2004; 148: 1–10.

    Article  CAS  PubMed  Google Scholar 

  357. Markus R, Panhuysen G, Tuiten A, Koppeschaar H . Effects of food on cortisol and mood in vulnerable subjects under controllable and uncontrollable stress. Physiol Behav 2000; 70: 333–342.

    Article  CAS  PubMed  Google Scholar 

  358. Markus CR, Olivier B, Panhuysen GE, Van Der Gugten J, Alles MS, Tuiten A et al. The bovine protein alpha-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. Am J Clin Nutr 2000; 71: 1536–1544.

    Article  CAS  PubMed  Google Scholar 

  359. Mann JJ, McBride PA, Malone KM, DeMeo M, Keilp J . Blunted serotonergic responsivity in depressed inpatients. Neuropsychopharmacology 1995; 13: 53–64.

    Article  CAS  PubMed  Google Scholar 

  360. Balldin J, Berggren U, Engel J, Eriksson M . Neuroendocrine evidence for reduced serotonergic neurotransmission during heavy drinking. Alcohol Clin Exp Res 1994; 18: 822–825.

    Article  CAS  PubMed  Google Scholar 

  361. Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ . Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology (Berlin) 2000; 150: 120–122.

    Article  CAS  Google Scholar 

  362. Smith GS, Lotrich FE, Malhotra AK, Lee AT, Ma Y, Kramer E et al. Effects of serotonin transporter promoter polymorphisms on serotonin function. Neuropsychopharmacology 2004; 29: 2226–2234.

    Article  CAS  PubMed  Google Scholar 

  363. Fernstrom JD, Wurtman RJ . Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 1972; 178: 414–416.

    Article  CAS  PubMed  Google Scholar 

  364. Lieben CK, Blokland A, Westerink B, Deutz NE . Acute tryptophan and serotonin depletion using an optimized tryptophan-free protein-carbohydrate mixture in the adult rat. Neurochem Int 2004; 44: 9–16.

    Article  CAS  PubMed  Google Scholar 

  365. Young SN, Smith SE, Pihl RO, Ervin FR . Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berlin) 1985; 87: 173–177.

    Article  CAS  Google Scholar 

  366. Stancampiano R, Melis F, Sarais L, Cocco S, Cugusi C, Fadda F . Acute administration of a tryptophan-free amino acid mixture decreases 5-HT release in rat hippocampus in vivo. Am J Physiol 1997; 272: R991–R994.

    CAS  PubMed  Google Scholar 

  367. Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL . Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 1974; 14: 1321–1329.

    Article  CAS  PubMed  Google Scholar 

  368. Moja EA, Cipolla P, Castoldi D, Tofanetti O . Dose-response decrease in plasma tryptophan and in brain tryptophan and serotonin after tryptophan-free amino acid mixtures in rats. Life Sci 1989; 44: 971–976.

    Article  CAS  PubMed  Google Scholar 

  369. Bel N, Artigas F . Reduction of serotonergic function in rat brain by tryptophan depletion: effects in control and fluvoxamine-treated rats. J Neurochem 1996; 67: 669–676.

    Article  CAS  PubMed  Google Scholar 

  370. Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH et al. Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 1998; 19: 26–35.

    Article  CAS  PubMed  Google Scholar 

  371. Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M . Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem 1999; 72: 1641–1647.

    Article  CAS  PubMed  Google Scholar 

  372. Blokland A, Lieben C, Deutz NE . Anxiogenic and depressive-like effects, but no cognitive deficits, after repeated moderate tryptophan depletion in the rat. J Psychopharmacol 2002; 16: 39–49.

    Article  CAS  PubMed  Google Scholar 

  373. Delgado PL, Price LH, Miller HL, Salomon RM, Aghajanian GK, Heninger GR et al. Serotonin and the neurobiology of depression. Effects of tryptophan depletion in drug-free depressed patients. Arch Gen Psychiatry 1994; 51: 865–874.

    Article  CAS  PubMed  Google Scholar 

  374. Van der Does AJ . The effects of tryptophan depletion on mood and psychiatric symptoms. J Affect Disord 2001; 64: 107–119.

    Article  CAS  PubMed  Google Scholar 

  375. Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C . Mood response to acute tryptophan depletion in healthy volunteers: sex differences and temporal stability. Neuropsychopharmacology 1996; 15: 465–474.

    Article  CAS  PubMed  Google Scholar 

  376. Smith KA, Fairburn CG, Cowen PJ . Relapse of depression after rapid depletion of tryptophan. Lancet 1997; 349: 915–919.

    Article  CAS  PubMed  Google Scholar 

  377. Benkelfat C, Ellenbogen MA, Dean P, Palmour RM, Young SN . Mood-lowering effect of tryptophan depletion. Enhanced susceptibility in young men at genetic risk for major affective disorders. Arch Gen Psychiatry 1994; 51: 687–697.

    Article  CAS  PubMed  Google Scholar 

  378. Taffe MA, Huitron-Resendiz S, Schroeder R, Parsons LH, Henriksen SJ, Gold LH . MDMA exposure alters cognitive and electrophysiological sensitivity to rapid tryptophan depletion in rhesus monkeys. Pharmacol Biochem Behav 2003; 76: 141–152.

    Article  CAS  PubMed  Google Scholar 

  379. Van der Does AJ . The mood-lowering effect of tryptophan depletion: possible explanation for discrepant findings. Arch Gen Psychiatry 2001; 58: 200–202.

    Article  CAS  PubMed  Google Scholar 

  380. Spillmann MK, Van der Does AJ, Rankin MA, Vuolo RD, Alpert JE, Nierenberg AA et al. Tryptophan depletion in SSRI-recovered depressed outpatients. Psychopharmacology (Berlin) 2001; 155: 123–127.

    Article  CAS  Google Scholar 

  381. Booij L, Van der Does AJ, Haffmans PM, Riedel WJ, Fekkes D, Blom MJ . The effects of high-dose and low-dose tryptophan depletion on mood and cognitive functions of remitted depressed patients. J Psychopharmacol 2005; 19: 267–275.

    Article  CAS  PubMed  Google Scholar 

  382. Booij L, van der Does AJ, Haffmans PM, Spinhoven P, McNally RJ . Acute tryptophan depletion as a model of depressive relapse: behavioural specificity and ethical considerations. Br J Psychiatry 2005; 187: 148–154.

    Article  PubMed  Google Scholar 

  383. Leentjens AF, Scholtissen B, Vreeling FW, Verhey FR . The serotonergic hypothesis for depression in Parkinson's disease: an experimental approach. Neuropsychopharmacology 2006; 31: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A W Jans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jans, L., Riedel, W., Markus, C. et al. Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12, 522–543 (2007). https://doi.org/10.1038/sj.mp.4001920

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001920

Keywords

This article is cited by

Search

Quick links