Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism

Abstract

Autism has a strong genetic background with a higher frequency of affected males suggesting involvement of X-linked genes and possibly also other factors causing the unbalanced sex ratio in the etiology of the disorder. We have identified two missense mutations in the ribosomal protein gene RPL10 located in Xq28 in two independent families with autism. We have obtained evidence that the amino-acid substitutions L206M and H213Q at the C-terminal end of RPL10 confer hypomorphism with respect to the regulation of the translation process while keeping the basic translation functions intact. This suggests the contribution of a novel, possibly modulating aberrant cellular function operative in autism. Previously, we detected high expression of RPL10 by RNA in situ hybridization in mouse hippocampus, a constituent of the brain limbic system known to be afflicted in autism. Based on these findings, we present a model for autistic disorder where a change in translational function is suggested to impact on those cognitive functions that are mediated through the limbic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Volkmar FR, Pauls D . Autism. Lancet 2003; 362: 1133–1141.

    Article  Google Scholar 

  2. Klauck SM . Genetics of autism spectrum disorder. Eur J Hum Genet 2006; 14: 714–720.

    Article  CAS  Google Scholar 

  3. Belmonte MK, Cook Jr EH, Anderson GM, Rubenstein JLR, Greenough WT, Beckel-Mitchener A et al. Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry 2004; 9: 646–663.

    Article  CAS  Google Scholar 

  4. Raymond GV, Bauman ML, Kemper TL . Hippocampus in autism: a Golgi analysis. Acta Neuropathol (Berlin) 2003; 91: 117–119.

    Article  Google Scholar 

  5. Fombonne E . Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 2003; 33: 365–382.

    Article  Google Scholar 

  6. Smalley SL . Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet 1997; 60: 1276–1282.

    Article  CAS  Google Scholar 

  7. Philippe A, Martinez M, Guilloud-Bataille M, Gillberg C, Råstam M, Sponheim E et al. Genome-wide scan for autism susceptibility genes. Hum Mol Genet 1999; 8: 805–812.

    Article  CAS  Google Scholar 

  8. Auranen M, Vanhala R, Varilo T, Ayers K, Kempas E, Ylisaukko-oja T et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25–27. Am J Hum Genet 2002; 71: 777–790.

    Article  Google Scholar 

  9. Shao Y, Wolpert CM, Raiford KL, Menold MM, Donnelly SL, Ravan SA et al. Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet (Neuropsychiatr Genet) 2002; 114: 99–105.

    Article  Google Scholar 

  10. Yonan AL, Alarcon M, Cheng R, Magnusson PKE, Spence SJ, Palmer AA et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet 2003; 73: 886–897.

    Article  CAS  Google Scholar 

  11. Vincent JB, Melmer G, Bolton PF, Hodgkinson S, Holmes D, Curtis D et al. Genetic linkage analysis of the X chromosome in autism, with emphasis on the fragile X region. Psychiatr Genet 2005; 15: 83–90.

    Article  Google Scholar 

  12. Kolb-Kokocinski A, Mehrle A, Bechtel S, Simpson JC, Kioschis P, Wiemann S et al. The systematic functional characterisation of Xq28 prioritises candidate disease genes. BMC Genomics 2006; 7: 29.

    Article  CAS  Google Scholar 

  13. Fombonne E . Modern views of autism. Can J Psychiatry 2003; 48: 503–505.

    Article  Google Scholar 

  14. Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G et al. Structure of the 80S ribosome from Saccaromyces cerevisiae-tRNA-ribosome and subunit-subunit interactions. Cell 2001; 107: 373–386.

    Article  CAS  Google Scholar 

  15. Nissan TA, Baßler J, Petfalski E, Tollervey D, Hurt E . 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J 2002; 21: 5539–5547.

    Article  CAS  Google Scholar 

  16. Gadal O, Straub D, Kessl J, Trumpower B, Tollervey D, Hurt E . Nuclear export of 60S ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol Cell Biol 2001; 21: 3405–3415.

    Article  CAS  Google Scholar 

  17. West M, Hedges JB, Chen A, Johnson AW . Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol Cell Biol 2005; 25: 3802–3813.

    Article  CAS  Google Scholar 

  18. Eisinger DP, Dick FA, Trumpower BL . Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Mol Cell Biol 1997; 17: 5136–5145.

    Article  CAS  Google Scholar 

  19. Klauck SM, Poustka F, Benner A, Lesch K-P, Poustka A . Serotonin transporter (5-HTT) gene variants associated with autism? Hum Mol Genet 1997; 6: 2233–2238.

    Article  CAS  Google Scholar 

  20. Lord C, Rutter M, Le Couteur A . Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  Google Scholar 

  21. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  Google Scholar 

  22. Sparrow SS, Balla DA, Cicchetti DV (eds). Vineland Adaptive Behavior Scales. AGS Publishing: Circle Pines, MN, 1984.

    Google Scholar 

  23. Bölte S, Poustka F . The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiatry Hum Dev 2002; 33: 165–172.

    Article  Google Scholar 

  24. Rose MD, Winston F, Hieter FP (eds). Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1990.

    Google Scholar 

  25. Koller HT, Klade T, Ellinger A, Breitenbach M . The yeast growth control gene GRC5 is highly homologues to the mammalian putative tumor suppressor gene QM. Yeast 1996; 12: 53–65.

    Article  CAS  Google Scholar 

  26. Gietz RD, Sugino A . New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 1988; 74: 527–534.

    Article  CAS  Google Scholar 

  27. Müller-Taubenberger A, Graack H-R, Grohmann L, Schleicher M, Gerisch G . An extended ubiquitin of Dictyostelium is located in the small ribosomal subunit. J Biol Chem 1989; 264: 5319–5322.

    PubMed  Google Scholar 

  28. Cigan AM, Foiani M, Hannig AM, Hinnebusch AG . Complex formation by positive and negative translational regulators of GCN4. Mol Cell Biol 1991; 11: 3217–3228.

    Article  CAS  Google Scholar 

  29. Nika J, Erickson FL, Hannig EM . Ribosomal protein L9 is the product of GRC5, a homolog of the putative tumor suppressor QM in S. cerevisiae. Yeast 1997; 13: 1155–1166.

    Article  CAS  Google Scholar 

  30. Oender K, Loeffler M, Doppler E, Eder M, Lach S, Heinrich F et al. Translational regulator RpL10p/Grc5p interacts physically and functionally with Sed1p, a dynamic component of the yeast cell surface. Yeast 2003; 20: 281–294.

    Article  CAS  Google Scholar 

  31. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA et al. (eds). Current protocols in molecular biology. John Wiley and Sons Inc.: NY, 1990.

    Google Scholar 

  32. Pachler K, Karl T, Kolmann K, Mehlmer N, Eder M, Loeffler M et al. Functional interaction in establishment of ribosomal integrity between small subunit protein rpS6 and translational regulator rpL10/Grc5p. FEMS Yeast Res 2004; 5: 271–280.

    Article  CAS  Google Scholar 

  33. Dick FA, Trumpower BL . Heterologous complementation reveals that mutant alleles of QSR1 render 60S ribosomal subunits unstable and translationally inactive. Nucleic Acids Res 1998; 26: 2442–2448.

    Article  CAS  Google Scholar 

  34. Brengues M, Teixeira D, Parker R . Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 2005; 310: 486–489.

    Article  CAS  Google Scholar 

  35. Eisinger DP, Dick FA, Denke E, Trumpower BL . SQT1, which encodes an essential WD domain protein of Saccharomyces cerevisiae, suppresses dominant-negative mutations of the ribosomal protein gene QSR1. Mol Cell Biol 1997; 17: 5146–5155.

    Article  CAS  Google Scholar 

  36. Draptchinskaia N, Gustavsson P, Andersson B, Petterson M, Willig T-N, Dianzani I et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nat Genet 1999; 21: 169–175.

    Article  CAS  Google Scholar 

  37. Palmen SJM, van Engeland H, Hof PR, Schmitz C . Neuropathological findings in autism. Brain 2004; 127: 2572–2583.

    Article  Google Scholar 

  38. Bauman ML, Kemper TL . The neuropathology of the autism spectrum disorders: what have we learned? Novartis Found Symp 2003; 251: 112–128.

    PubMed  Google Scholar 

  39. McEwen BS . Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatry 1997; 2: 255–262.

    Article  CAS  Google Scholar 

  40. Johnston MV, Alemi L, Harum KH . Learning, memory and transcription factors. Pediatr Res 2003; 53: 369–374.

    Article  Google Scholar 

  41. Jin P, Alisch RS, Warren ST . RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 2004; 6: 1048–1053.

    Article  CAS  Google Scholar 

  42. Bear MF, Huber KM, Warren ST . The mGluR theory of fragile X mental retardation. Trends Neurosci 2004; 27: 370–377.

    Article  CAS  Google Scholar 

  43. Miyoshi K, Tsujii R, Yoshida H, Maki Y, Wada A, Matsui Y et al. Normal assembly of 60 S ribosomal subunits is required for the signaling in response to a secretory defect in Saccharomyces cerevisiae. J Biol Chem 2002; 277: 18334–18339.

    Article  CAS  Google Scholar 

  44. Zhao Y, Sohn Y-H, Warner JR . Autoregulation in the biosynthesis of ribosomes. Mol Cell Biol 2004; 23: 699–707.

    Article  CAS  Google Scholar 

  45. Just MA, Cherkassky VL, Keller TA, Minshew NJ . Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004; 127: 1811–1821.

    Article  Google Scholar 

  46. Wickelgren I . Autistic brains out of synch? Science 2005; 308: 1856–1858.

    Article  CAS  Google Scholar 

  47. Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.

    Article  CAS  Google Scholar 

  48. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard M-P et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 2004; 74: 552–557.

    Article  CAS  Google Scholar 

  49. Maestrini E, Lai C, Marlow A, Matthews N, Wallace S, Bailey A et al. Serotonin transporter (5-HTT) and γ-aminobutyric acid receptor subunit β3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. Am J Med Genet 1999; 88: 492–496.

    Article  CAS  Google Scholar 

  50. Devlin B, Cook Jr EH, Coon H, Dawson G, Grigorenko EL, McMahon W et al. Autism and the serotonin transporter: the long and short of it. Mol Psychiatry 2005; 10: 1110–1116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the families for their cooperation and the professionals for their support in collecting data; S Bölte for establishment of the patient database; U Ernst, H Bausbacher and A Irsigler for excellent technical assistance; K Oender, M Loeffler and T Karl for expert advice on cloning strategies; H Zhu and J Zhou for expert assistance in ribosomal profile analyses; S Bechtel for stimulating discussions; S Wiemann and D Arlt for critical reading of the manuscript. LBK wishes to thank M Breitenbach for continuous and generous support of her work. This work was supported by grants from the Deutsche Forschungsgemeinschaft to AP and FP and in part by grant 01GR0420 of the National Genome Research Network, funded by the Bundesministerium für Bildung und Forschung, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Poustka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klauck, S., Felder, B., Kolb-Kokocinski, A. et al. Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 11, 1073–1084 (2006). https://doi.org/10.1038/sj.mp.4001883

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001883

Keywords

This article is cited by

Search

Quick links