Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder

Abstract

The somatostatin receptor 5 (SSTR5) gene is a candidate gene for bipolar affective disorder (BPAD) as well as for other neuropsychiatric disorders. The gene is positioned on chromosome 16p13.3, a region that has been implicated by a few linkage studies to potentially harbor a disease susceptibility gene for BPAD. Recent evidence shows that the dopamine D2 receptor (DRD2) and SSTR5 interact physically to form heterodimers with enhanced functional activity. Brain D2 dopamine receptors are one of the major targets of neuroleptic treatments in psychiatric disorders. In this study we systematically screened the promoter and coding region of the SSTR5 gene for genetic variation that could contribute to the development of neuropsychiatric disorders. Eleven novel single nucleotide polymorphisms (SNPs) were identified including four missense SNPs, Leu48Met, Ala52Val, Pro109Ser and Pro335Leu. We carried out an association study of BPAD using 80 Danish cases and 144 control subjects, and replication analysis using 55 British cases and 88 control subjects. For the Danish population, association was suggested between silent SNP G573A and BPAD (P = 0.008). For the British population we found association to BPAD with missense mutation Leu48Met (P = 0.003) and missense mutation Pro335Leu (P = 0.004). The statistical significance of the association was, however, greatly reduced after correcting for multiple testing. When combining genotypes from Leu48Met and Pro335Leu into haplotypes, association to BPAD was found in the British population (P = 0.0007). This haplotype association was not replicated in the Danish population. Our results may indicate that the SSTR5 gene is involved in the etiology of BPAD or may exist in linkage disequilibrium with a susceptibility gene close to SSTR5. However, given the marginal statistical significance and the potential for false-positive results in association studies with candidate genes, further studies are needed to clarify this hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. D16S85 was found on compound Z69706 and D16S521 was found on compound Z69719, both on contig NT_000655, at URL: http://www.ncbi.nlm.nih.gov/genome/guide/HsChr16.shtml.

References

  1. Ewald H, Mors O, Flint T, Koed K, Eiberg H, Kruse TA . A possible locus for manic depressive illness on chromosome 16p13 Psychiatr Genet 1995; 5: 71–81

    Article  CAS  PubMed  Google Scholar 

  2. Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A et al. A comprehensive genetic map of the human genome based on 5264 microsatellites Nature 1996; 380: 152–154

    Article  CAS  PubMed  Google Scholar 

  3. Edenberg HJ, Foroud T, Conneally PM, Sorbel JJ, Carr K, Crose C et al. Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22 Am J Med Genet 1997; 74: 238–246

    Article  CAS  PubMed  Google Scholar 

  4. McInnes LA, Escamilla MA, Service SK, Reus VI, Leon P, Silva S et al. A complete genome screen for genes predisposing to severe bipolar disorder in two Costa Rican pedigrees Proc Natl Acad Sci USA 1996; 93: 13060–13065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levitas AS, Reid CS . Rubinstein–Taybi syndrome and psychiatric disorders J Intellect Disabil Res 1998; 42: 284–292

    Article  PubMed  Google Scholar 

  6. Adams LJ, Salmon JA, Kwok JB, Vivero C, Donald JA, Mitchell PB et al. Exclusion of linkage between bipolar affective disorder and chromosome 16 in 12 Australian pedigrees Am J Med Genet 1997; 74: 304–310

    Article  CAS  PubMed  Google Scholar 

  7. Blackwood DH, He L, Morris SW, McLean A, Whitton C, Thomson M et al. A locus for bipolar affective disorder on chromosome 4p Nat Genet 1996; 12: 427–430

    Article  CAS  PubMed  Google Scholar 

  8. Coon H, Jensen S, Hoff M, Holik J, Plaetke R, Reimherr F et al. A genome-wide search for genes predisposing to manic-depression, assuming autosomal dominant inheritance Am J Hum Genet 1993; 52: 1234–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2 Proc Natl Acad Sci USA 1999; 96: 5604–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Friddle C, Koskela R, Ranade K, Hebert J, Cargill M, Clark CD et al. Full-genome scan for linkage in 50 families segregating the bipolar affective disease phenotype Am J Hum Genet 2000; 66: 205–215

    Article  CAS  PubMed  Google Scholar 

  11. Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagne B et al. Genome-wide search for linkage of bipolar affective disorders in a very large pedigree derived from a homogeneous population in Quebec points to a locus of major effect on chromosome 12q23–q24 Am J Med Genet 1999; 88: 567–587

    Article  CAS  PubMed  Google Scholar 

  12. Murphy VE, Mynett-Johnson LA, Claffey E, Bergin P, McAuliffe M, Kealey C et al. Search for bipolar disorder susceptibility loci: the application of a modified genome scan concentrating on gene-rich regions Am J Med Genet 2000; 96: 728–732

    Article  CAS  PubMed  Google Scholar 

  13. Ewald H, Kruse TA . Bipolar affective disorder, chromosome 16p13.3, and recessive disease genes [letter] Am J Med Genet 1997; 74: 549–550

    Article  CAS  PubMed  Google Scholar 

  14. Takeda J, Fernald AA, Yamagata K, Le Beau MM, Bell GI . Localization of human somatostatin receptor 5 gene (SSTR5) to chromosome band 16p13.3 by fluorescence in situ hybridization Genomics 1995; 26: 638–639

    Article  CAS  PubMed  Google Scholar 

  15. Deloukas P, Schuler GD, Gyapay G, Beasley EM, Soderlund C, Rodriguez-Tome P et al. A physical map of 30 000 human genes Science 1998; 282: 744–746

    Article  CAS  PubMed  Google Scholar 

  16. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone Science 1973; 179: 77–79

    Article  CAS  PubMed  Google Scholar 

  17. Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB . The somatostatin receptor family Life Sci 1995; 57: 1249–1265

    Article  CAS  PubMed  Google Scholar 

  18. Rubinow DR, Davis CL, Post RM . Somatostatin in neuropsychiatric disorders Prog Neuropsychopharmacol Biol Psychiatry 1988; 12: 137–155

    Article  Google Scholar 

  19. Bissette G, Myers B . Somatostatin in Alzheimer's disease and depression Life Sci 1992; 51: 1389–1410

    Article  CAS  PubMed  Google Scholar 

  20. Patel YC . Somatostatin and its receptor family Front Neuroendocrinol 1999; 20: 157–198

    Article  CAS  PubMed  Google Scholar 

  21. Panetta R, Greenwood MT, Warszynska A, Demchyshyn LL, Day R, Niznik HB et al. Molecular cloning, functional characterization, and chromosomal localization of a human somatostatin receptor (somatostatin receptor type 5) with preferential affinity for somatostatin-28 Mol Pharmacol 1994; 45: 417–427

    CAS  PubMed  Google Scholar 

  22. Yamada Y, Kagimoto S, Kubota A, Yasuda K, Masuda K, Someya Y et al. Cloning, functional expression and pharmacological characterization of a fourth (hSSTR4) and a fifth (hSSTR5) human somatostatin receptor subtype Biochem Biophys Res Commun 1993; 195: 844–852

    Article  CAS  PubMed  Google Scholar 

  23. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC . Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity Science 2000; 288: 154–157

    Article  CAS  PubMed  Google Scholar 

  24. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder, 4th edn APA: Washington DC 1994

  25. Sanger F, Nicklen S, Coulson AR . DNA sequencing with chain-terminating inhibitors Proc Natl Acad Sci USA 1977; 74: 5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lathrop GM, Lalouel JM, Julier C, Ott J . Strategies for multilocus linkage analysis in humans Proc Natl Acad Sci USA 1984; 81: 3443–3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Terwilliger JD, Ott J . Handbook of Human Genetic Linkage The John Hopkins University Press: Baltimore 1994

    Google Scholar 

  28. Sham PC, Curtis D . Monte Carlo tests for associations between disease and alleles at highly polymorphic loci Ann Hum Genet 1995; 59: 97–105

    Article  CAS  PubMed  Google Scholar 

  29. Lewontin RC . The interaction of selection and linkage. I. General consideration; heterotic models Genetics 1964; 49: 49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Greenwood MT, Panetta R, Robertson LA, Liu JL, Patel YC . Sequence analysis of the 5′-flanking promoter region of the human somatostatin receptor 5 Biochem Biophys Res Commun 1994; 205: 1883–1890

    Article  CAS  PubMed  Google Scholar 

  31. Quandt K, Frech K, Karas H, Wingender E, Werner T . MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data Nucleic Acids Res 1995; 23: 4878–4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasi R, Puebla L, Khare S, Patel YC . Polymorphism in the 5′ flanking region of the human somatostatin receptor subtype 5 Gene 1998; 214: 45–49

    Article  CAS  PubMed  Google Scholar 

  33. Thompson EA, Deeb S, Walker D, Motulsky AG . The detection of linkage disequilibrium between closely linked markers: RFLPs at the AI-CIII apolipoprotein genes Am J Hum Genet 1988; 42: 113–124

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Przeworski M, Hudson RR, Di Rienzo A . Adjusting the focus on human variation Trends Genet 2000; 16: 296–302

    Article  CAS  PubMed  Google Scholar 

  35. Cruts M, van Duijn CM, Backhovens H, Van den Broeck M, Wehnert A, Serneels S et al. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease Hum Mol Genet 1998; 7: 43–51

    Article  CAS  PubMed  Google Scholar 

  36. Patel YC, Greenwood M, Panetta R, Hukovic N, Grigorakis S, Robertson LA et al. Molecular biology of somatostatin receptor subtypes Metabolism 1996; 45: 31–38

    Article  CAS  PubMed  Google Scholar 

  37. Hukovic N, Panetta R, Kumar U, Rocheville M, Patel YC . The cytoplasmic tail of the human somatostatin receptor type 5 is crucial for interaction with adenylyl cyclase and in mediating desensitization and internalization J Biol Chem 1998; 273: 21416–21422

    Article  CAS  PubMed  Google Scholar 

  38. Knowles JA, Fyer AJ, Vieland VJ, Weissman MM, Hodge SE, Heiman GA et al. Results of a genome-wide genetic screen for panic disorder Am J Med Genet 1998; 81: 139–147

    Article  CAS  PubMed  Google Scholar 

  39. International Molecular Genetic Study of Autism Consortium. A full genome screen for autism with evidence for linkage to a region on chromosome 7q Hum Mol Genet 1998; 7: 571–578

  40. Ewald H, Mors O, Eiberg H . Linkage analysis between manic-depressive illness and 35 classical markers Am J Med Genet 1994; 54: 144–148

    Article  CAS  PubMed  Google Scholar 

  41. Risch N, Merikangas K . The future of genetic studies of complex human diseases Science 1996; 273: 1516–1517

    Article  CAS  PubMed  Google Scholar 

  42. Long AD, Langley CH . The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits Genome Res 1999; 9: 720–731

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin ER, Lai EH, Gilbert JR, Rogala AR, Afshari AJ, Riley J et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease Am J Hum Genet 2000; 67: 383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The SSTR5 clone used in this study was kindly provided by Dr Graeme I Bell, Howard Hughes Medical Institute. We thank Drs Robert Plomin (SGDP Centre) and Simon Lovestone (Old Age Psychiatry) for access to the British control samples. This work was supported by the Danish Medical Research Council (9303757, 9602007, 9902685, 9902769), Fonden til Laegevidenskabens Fremme, Fonden til Psykiatriens Fremme, The Psychiatric Research Foundation, The Eli and Egon Larsen Foundation, The Geert-Jørgensen Foundation, The Axel Thomsen Foundation, The Trier-Hansen Foundation, and The Jacob Madsen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Nyegaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyegaard, M., Børglum, A., Bruun, T. et al. Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder. Mol Psychiatry 7, 745–754 (2002). https://doi.org/10.1038/sj.mp.4001049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001049

Keywords

This article is cited by

Search

Quick links