Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Stemcellology

Differential response of primitive human CD34 and CD34+ hematopoietic cells to the Notch ligand Jagged-1

Abstract

Recent reports indicate that activation of the Notch signaling pathway delays the differentiation of hematopoietic progenitors, suggesting that Notch may be used to develop novel ex vivo culture conditions for the expansion of primitive cells to be used in clinical transplantation. Here, we compare Notch expression and the effects of Jagged-1 treatment on highly purified subfractions of primitive CD34+ and CD34− human hematopoietic cells. Unlike response of cultured CD34+ cells, Jagged-1 treatment did not enhance the proliferation of CD34− cells, or promote differentiation of CD34− cells into CD34+ cells. While CD34+ and AC133−CD34− cells were shown to express all known forms of Notch receptors, Notch-3 and Notch-4 were not detected in AC133+CD34− cells. Similarly, CD34+ progeny of differentiated CD34− cells did not upregulate Notch-3 or Notch-4 upon differentiation, although transcripts for these genes were expressed in CD34+ arising from CD34+ CD38− parents, suggesting that the Notch receptor expression is tightly and differentially controlled. Fringe, known to inhibit Notch signaling in response to specific Notch ligands, was expressed in parent CD34− and CD34+ cells as well as their CD34+ progeny. We suggest that the inability of primitive CD34− cells to positively respond to Jagged-1 may be due in part to the absence of Notch-3 and Notch-4. Taken together, our study illustrates functional distinctiveness of the primitive CD34− subsets to CD34+ counterparts in relation to Jagged-1 response, and represents the first demonstration of a molecular difference among de novo isolated CD34+ compared to in vitro generated CD34+ cells arising from primitive CD34− or CD34+ parents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fleming RJ . Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol 1998; 9: 599–607.

    Article  CAS  PubMed  Google Scholar 

  2. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  PubMed  Google Scholar 

  3. Gray GE, Mann RS, Mitsiadis E, Henrique D, Carcangiu ML, Banks A et al. Human ligands of the Notch receptor. Am J Pathol 1999; 154: 785–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G . Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. NaT-cell Biol 2000; 2: 515–520.

    Article  CAS  PubMed  Google Scholar 

  5. Conlon RA, Reaume AG, Rossant J . Notch1 is required for the coordinate segmentation of somites. Development 1995; 121: 1533–1545.

    CAS  PubMed  Google Scholar 

  6. Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR,, Tsujimoto Y . Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 1999; 126: 3415–3424.

  7. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T . Notch1 is essential for postimplantation development in mice. Genes Dev 1994; 8: 707–719.

    Article  CAS  PubMed  Google Scholar 

  8. Kojika S, Griffin JD . Notch receptors and hematopoiesis. Exp Hematol 2001; 29: 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 1998; 12: 1046–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Milner LA, Bigas A . Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 1999; 93: 2431–2448.

    CAS  PubMed  Google Scholar 

  11. Aster J, Pear W, Hasserjian R, Erba H, Davi F, Luo B et al. Functional analysis of the TAN-1 gene, a human homolog of Drosophila notch. Cold Spring Harb Symp Quant Biol 1994; 59: 125–136.

    Article  CAS  PubMed  Google Scholar 

  12. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  13. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells [in process citation]. J Exp Med 2000; 192: 1365–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milner LA, Kopan R, Martin DI, Bernstein ID . A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood 1994; 83: 2057–2062.

    CAS  PubMed  Google Scholar 

  15. Han W, Ye Q, Moore MA . A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 2000; 95: 1616–1625.

    CAS  PubMed  Google Scholar 

  16. Walker L, Lynch M, Silverman S, Fraser J, Boulter J, Weinmaster G et al. The Notch/Jagged pathway inhibits proliferation of human hematopoietic progenitors in vitro. Stem Cells 1999; 17: 162–171.

    Article  CAS  PubMed  Google Scholar 

  17. Schroeder T, Just U . Notch signalling via RBP-J promotes myeloid differentiation. EMBO J 2000; 19: 2558–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schroeder T, Just U . mNotch1 signaling reduces proliferation of myeloid progenitor cells by altering cell-cycle kinetics. Exp Hematol 2000; 28: 1206–1213.

    Article  CAS  PubMed  Google Scholar 

  19. Karanu FN, Murdoch B, Miyabayashi T, Ohno M, Koremoto M, Gallacher L et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 2001; 97: 1960–1967.

    Article  CAS  PubMed  Google Scholar 

  20. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  21. Morel F, Galy A, Chen B, Szilvassy SJ . Equal distribution of competitive long-term repopulating stem cells in the CD34+ and CD34− fractions of Thy-1low Lin−/lowSca-1+ bone marrow cells. Exp Hematol 1998; 26: 440–448.

    CAS  PubMed  Google Scholar 

  22. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE . A newly discovered class of human hematopoietic cells with SCID-repopulating activity [see comments]. Nat Med 1998; 4: 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  23. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34− cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 1998; 26: 353–360.

    CAS  PubMed  Google Scholar 

  24. Zanjani ED, Almeida-Porada G, Livingston AG, Porada CD, Ogawa M . Engraftment and multilineage expression of human bone marrow CD34− cells in vivo. Ann N Y Acad Sci 1999; 872: 220–231; discussion 231–222.

    Article  CAS  PubMed  Google Scholar 

  25. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M . Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000; 95: 2813–2820.

    CAS  PubMed  Google Scholar 

  26. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34−low/negative hematopoietic stem cell. Science 1996; 273: 242–245.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Lin Y, Zhan Y, Yang G, Louie J, Harrison DE et al. Murine hematopoietic stem cell characterization and its regulation in BM transplantation. Blood 2000; 96: 3016–3022.

    CAS  PubMed  Google Scholar 

  28. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999; 94: 2548–2554.

    CAS  PubMed  Google Scholar 

  29. Sakano S, Serizawa R, Inada T, Iwama A, Itoh A, Kato C, Shimizu Y, Shinkai F et al. Characterization of a ligand for receptor protein-tyrosine kinase HTK expressed in immature hematopoietic cells. Oncogene 1996; 13: 813–822.

    CAS  PubMed  Google Scholar 

  30. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  31. Sakabe H, Yahata N, Kimura T, Zeng ZZ, Minamiguchi H, Kaneko H et al. Human cord blood-derived primitive progenitors are enriched in CD34+c-kit- cells: correlation between long-term culture-initiating cells and telomerase expression. Leukemia 1998; 12: 728–734.

    Article  CAS  PubMed  Google Scholar 

  32. Weaver A, Ryder WD, Testa NG . Measurement of long-term culture initiating cells (LTC-ICs) using limiting dilution: comparison of endpoints and stromal support. Exp Hematol 1997; 25: 1333–1338.

    CAS  PubMed  Google Scholar 

  33. Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE . Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med 1997; 186: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lieber T, Kidd S, Young MW . kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 2002; 16: 209–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P et al. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 1999; 283: 91–94.

    Article  CAS  PubMed  Google Scholar 

  36. Bland CE, Kimberly P, Rand MD . Notch induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem 2003; 18: 18.

    Google Scholar 

  37. Baron M, Aslam H, Flasza M, Fostier M, Higgs JE, Mazaleyrat SL et al. Multiple levels of Notch signal regulation (review). Mol Membr Biol 2002; 19: 27–38.

    Article  CAS  PubMed  Google Scholar 

  38. Shimizu K, Chiba S, Saito T, Kumano K, Takahashi T, Hirai H . Manic fringe and lunatic fringe modify different sites of the Notch2 extracellular region, resulting in different signaling modulation. J Biol Chem 2001; 276: 25753–25758.

    Article  CAS  PubMed  Google Scholar 

  39. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM . A functional comparison of CD34 + CD38− cells in cord blood and bone marrow. Blood 1995; 86: 3745–3753.

    CAS  PubMed  Google Scholar 

  40. Emerson SG, Conrad PD, Hogan CJ, Shpall EJ, McNulty O, McNiece I et al. Clinical application of hematopoietic stem cell culture and expansion. Cancer Treat Res 1999; 101: 377–388.

    Article  CAS  PubMed  Google Scholar 

  41. Richter J, Yang G, Louie J, Harrison DE, Anderson WF . Gene transfer to hematopoietic cells--the clinical experience. Eur J Haematol 1997; 59: 67–75.

    Article  CAS  PubMed  Google Scholar 

  42. Weissman IL . Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000; 287: 1442–1446.

    Article  CAS  PubMed  Google Scholar 

  43. Carlesso N, Aster JC, Sklar J, Scadden DT . Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood. 1999; 93: 838–848.

    CAS  PubMed  Google Scholar 

  44. Uyttendaele H, Closson V, Wu G, Roux F, Weinmaster G, Kitajewski J . Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res. 2000; 60: 91–103.

    Article  CAS  PubMed  Google Scholar 

  45. Felli MP, Maroder M, Mitsiadis TA, Campese AF, Bellavia D, Vacca A et al. Expression pattern of notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand-receptor interactions in intrathymic T-cell development. Int Immunol 1999; 11: 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  46. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dongmei Wu and Barbara Murdoch for their technical assistance. This work was supported by the National Cancer Institute of Canada (NCIC), postdoctoral scholarship to FNK, and a Canadian Research Chair in Stem Cell Biology and Regenerative Medicine awarded to MB.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karanu, F., Yuefei, L., Gallacher, L. et al. Differential response of primitive human CD34 and CD34+ hematopoietic cells to the Notch ligand Jagged-1. Leukemia 17, 1366–1374 (2003). https://doi.org/10.1038/sj.leu.2402973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402973

Keywords

This article is cited by

Search

Quick links