Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular cytogenetic analysis of 10;11 rearrangements in acute myeloid leukemia

Abstract

MLLT10 (previously called AF10) is a moderately common MLL fusion partner predominantly occurring in acute monoblastic leukemia (AML-M5). 10;11 rearrangements require at least three breaks in order to generate an in-frame MLL-MLLT10 fusion as a result of the opposite orientations of both genes on the respective chromosome arms. In this study, we describe a detailed molecular cytogenetic analysis of MLL-MLLT10 positive 10;11 rearrangements in two patients. We observed an as yet unreported chromosomal mechanism with at least four breakpoints, leading to MLL-MLLT10 gene fusion in a 24-year-old male. An inversion of 11q13-q23 with a breakpoint in the MLL gene was followed by an additional break 3′ of MLL prior to insertion of the 11q segment into MLLT10. In a second patient, a 37-year-old male with AML-M5b, molecular cytogenetic analysis of an apparent 10;11 reciprocal translocation showed an intrachromosomal inversion of 3′MLLT10followed by a reciprocal translocation between 10p12 and 11q23. Review of the literature showed that all cases were the result of an inversion of either 10p or 11q followed by translocation 10p;11q or insertion of the inverted segment into MLLT10 or MLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rowley JD . The critical role of chromosome translocations in human leukemias Annu Rev Genet 1998 32: 495–519

    Article  CAS  PubMed  Google Scholar 

  2. Dimartino JF, Cleary ML . MII rearrangements in haematological malignancies: lessons from clinical and biological studies Br J Haematol 1999 106: 614–626

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi Y . The molecular genetics of recurring chromosome abnormalities in acute myeloid leukemia Semin Hematol 2000 37: 368–380

    Article  CAS  PubMed  Google Scholar 

  4. Martinez-Climent JA, Thirman MJ, Espinosa R 3rd, Le Beau MM, Rowley JD . Detection of 11q23/MLL rearrangements in infant leukemias with fluorescence in situ hybridization and molecular analysis Leukemia 1995 9: 1299–1304

    CAS  PubMed  Google Scholar 

  5. Poirel H, Rack K, Delabesse E, Radford-Weiss I, Troussard X, Debert C, Leboeuf D, Bastard C, Picard F, Veil-Buzyn A, Flandrin G, Bernard O, Macintyre E . Incidence and characterization of MLL gene (11q23) rearrangements in acute myeloid leukemia M1 and M5 Blood 1996 87: 2496–2505

    CAS  PubMed  Google Scholar 

  6. Andreasson P, Höglund M, Bekassy AN, Garwicz S, Heldrup J, Mitelman F, Johansson B . Cytogenetic and FISH studies of a single center consecutive series of 152 childhood acute lymphoblastic leukemias Eur J Haematol 2000 65: 40–51

    Article  CAS  PubMed  Google Scholar 

  7. Chaplin T, Ayton P, Bernard OA, Saha V, Della Valle V, Hillion J, Gregorini A, Lillington D, Berger R, Young BD . A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia Blood 1995 85: 1435–1441

    CAS  PubMed  Google Scholar 

  8. Beverloo HB, Le Coniat M, Wijsman J, Lillington DM, Bernard O, de Klein A, van Wering E, Welborn J, Young BD, Hagemeijer A et al. Breakpoint heterogeneity in t(10;11) translocation in AML-M4/M5 resulting in fusion of AF10 and MLL is resolved by fluorescent in situ hybridization analysis Cancer Res 1995 55: 4220–4224

    CAS  PubMed  Google Scholar 

  9. Berger R, Le Coniat M, Flexor MA, Leblanc T . Translocation t(10;11) involving the MLL gene in acute myeloid leukemia. Importance of fluorescence in situ hybridization (FISH) analysis Ann Genet 1996 39: 147–151

    CAS  PubMed  Google Scholar 

  10. Tanabe S, Bohlander SK, Vignon CV, Espinosa R 3rd, Zhao N, Strissel PL, Zeleznik-Le NJ, Rowley JD . AF10 is split by MLL and HEAB, a human homolog to a putative Caenorhabditis elegans ATP/GTP-binding protein in an inv ins(10;11)(p12;q23q12) Blood 1996 88: 3535–3545

    CAS  PubMed  Google Scholar 

  11. Angioni A, La Starza R, Mecucci C, Sprovieri T, Matteucci C, De Rossi G, Balloni P, Cimino G . Interstitial insertion of AF10 into the ALL1 gene in a case of infant acute lymphoblastic leukemia Cancer Genet Cytogenet 1998 107: 107–110

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi H, Espinosa R 3rd, Thirman MJ, Gill HJ, Fernald AA, Diaz MO, Le Beau MM, Rowley JD . Heterogeneity of breakpoints of 11q23 rearrangements in hematologic malignancies identified with fluorescence in situ hybridization Blood 1993 82: 547–551

    CAS  PubMed  Google Scholar 

  13. Borkhardt A, Haas OA, Strobl W, Repp R, Mann G, Gadner H, Lampert F . A novel type of MLL/AF10 fusion transcript in a child with acute megakaryocytic leukemia (AML-M7) Leukemia 1995 9: 1796–1797

    CAS  PubMed  Google Scholar 

  14. Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R, Young BD . The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene Blood 1995 86: 2073–2076

    CAS  PubMed  Google Scholar 

  15. Hjorth-Sørensen B, Pallisgaard N, Grönholm M, Hökland P, Clausen N, Jørgensen P . A novel MLL-AF10 fusion mRNA variant in a patient with acute myeloid leukemia detected by a new asymmetric reverse transcription PCR method Leukemia 1997 11: 1588–1593

    Article  PubMed  Google Scholar 

  16. Lillington DM, Young BD, Berger R, Martineau M, Moorman AV, Secker-Walker LM . The t(10;11)(p12;q23) translocation in acute leukaemia: a cytogenetic and clinical study of 20 patients. European 11q23 Workshop participants Leukemia 1998 12: 801–804

    Article  CAS  PubMed  Google Scholar 

  17. Chaplin T, Jones L, Debernardi S, Hill AS, Lillington DM, Young BD . Molecular analysis of the genomic inversion and insertion of AF10 into MLL suggests a single-step event Genes Chromos Cancer 2001 30: 175–180

    Article  CAS  PubMed  Google Scholar 

  18. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK . The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family Proc Natl Acad Sci USA 1996 93: 4804–4809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dreyling MH, Schrader K, Fonatsch C, Schlegelberger B, Haase D, Schoch C, Ludwig W, Löffler H, Büchner T, Wörmann B, Hiddemann W, Bohlander SK . MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis Blood 1998 91: 4662–4667

    CAS  PubMed  Google Scholar 

  20. Taki T, Shibuya N, Taniwaki M, Hanada R, Morishita K, Bessho F, Yanagisawa M, Hayashi Y . ABI-1, a human homolog to mouse Abl-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23) Blood 1998 92: 1125–1130

    CAS  PubMed  Google Scholar 

  21. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group Ann Intern Med 1985 103: 620–625

    Article  CAS  PubMed  Google Scholar 

  22. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO) Br J Haematol 1991 78: 325–329

    Article  CAS  PubMed  Google Scholar 

  23. Mitelman F (ed). ISCN (1995): An International System for Human Cytogenetic Nomenclature S Karger: Basel 1995

    Google Scholar 

  24. Van Roy N, Laureys G, Cheng NC, Willem P, Opdenakker G, Versteeg R, Speleman F . 1;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines Genes Chromos Cancer 1994 10: 103–114

    Article  CAS  PubMed  Google Scholar 

  25. Van Limbergen H, Beverloo HB, van Drunen E, Janssens A, Hählen K, Poppe B, Van Roy N, Marynen P, De Paepe A, Slater R, Speleman F . Molecular cytogenetic and clinical findings in ETV6/ABL1-positive leukemia Genes Chromos Cancer 2001 30: 274–282

    Article  CAS  PubMed  Google Scholar 

  26. Collins C, Kuo WL, Segraves R, Fuscoe J, Pinkel D, Gray JW . Construction and characterization of plasmid libraries enriched in sequences from single human chromosomes Genomics 1991 11: 997–1006

    Article  CAS  PubMed  Google Scholar 

  27. Vocero-Akbani A, Helms C, Wang JC, Sanjurjo FJ, Korte-Sarfaty J, Veile RA, Liu L, Jauch A, Burgess AK, Hing AV, Holt MS, Ramachandra S, Whelan AJ, Anker R, Ahrent L, Chen M, Gavin MR, Iannantuoni K, Morton SM, Pandit SD, Read CM, Steinbrueck T, Warlick C, Smoller DA, Donis-Keller H . Mapping human telomere regions with YAC and P1 clones: chromosome-specific markers for 27 telomeres including 149 STSs and 24 polymorphisms for 14 proterminal regions Genomics 1996 36: 492–506

    Article  CAS  PubMed  Google Scholar 

  28. Hosoda F, Arai Y, Kitamura E, Inazawa J, Fukushima M, Tokino T, Nakamura Y, Jones C, Kakazu N, Abe T, Ohki M . A complete NotI restriction map covering the entire long arm of human chromosome 11 Genes Cells 1997 2: 345–357

    Article  CAS  PubMed  Google Scholar 

  29. Speleman F, Van Gele M, Maertens L, Van Roy N . Improved protocol for chromatin fibre preparation from fixed cells. Technical Tips online Trends Genet 1997 T01123

  30. Narita M, Shimizu K, Hayashi Y, Taki T, Taniwaki M, Hosoda F, Kobayashi H, Nakamura H, Sadamori N, Ohnishi H, Bessho F, Yanagisawa M, Ohki M . Consistent detection of CALM-AF10 chimaeric transcripts in haematological malignancies with t(10;11)(p13;q14) and identification of novel transcripts Br J Haematol 1999 105: 928–937

    Article  CAS  PubMed  Google Scholar 

  31. Kaneko Y, Kobayashi H, Handa M, Satake N, Maseki N . EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma Genes Chromos Cancer 1997 18: 228–231

    Article  CAS  PubMed  Google Scholar 

  32. Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM . The novel activation of ABL by fusion to an ets-related gene, TEL Cancer Res 1995 55: 34–38

    CAS  PubMed  Google Scholar 

  33. Stark B, Jeison M, Gobuzov R, Finkelshtein S, Ash S, Avrahami G, Cohen IJ, Stein J, Yaniv I, Zaizov R, Bar-Am I . Apparently unrelated clones shown by spectral karyotyping to represent clonal evolution of cryptic t(10;11)(p13;q23) in a patient with acute monoblastic leukemia Cancer Genet Cytogenet 2000 120: 105–110

    Article  CAS  PubMed  Google Scholar 

  34. Sinclair EJ, Jalihal S, Watmore AE . Acute monocytic leukemia with a novel 10;11 rearrangement resolved by fluorescence in situ hybridization Cancer Genet Cytogenet 2000 118: 20–23

    Article  CAS  PubMed  Google Scholar 

  35. Broeker PL, Super HG, Thirman MJ, Pomykala H, Yonebayashi Y, Tanabe S, Zeleznik-Le N, Rowley JD . Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites Blood 1996 87: 1912–1922

    CAS  PubMed  Google Scholar 

  36. Cimino G, Rapanotti MC, Biondi A, Elia L, Lo Coco F, Price C, Rossi V, Rivolta A, Canaani E, Croce CM, Mandelli F, Greaves M . Infant acute leukemias show the same biased distribution of ALL1 gene breaks as topoisomerase II related secondary acute leukemias Cancer Res 1997 57: 2879–2883

    CAS  PubMed  Google Scholar 

  37. Super HG, Strissel PL, Sobulo OM, Burian D, Reshmi SC, Roe B, Zeleznik-Le NJ, Diaz MO, Rowley JD . Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia Genes Chromos Cancer 1997 20: 185–195

    Article  CAS  PubMed  Google Scholar 

  38. Strissel PL, Strick R, Rowley JD, Zeleznik-Le NJ . An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region Blood 1998 92: 3793–3803

    CAS  PubMed  Google Scholar 

  39. Strissel PL, Strick R, Tomek RJ, Roe BA, Rowley JD, Zeleznik-Le NJ . DNA structural properties of AF9 are similar to MLL and could act as recombination hot spots resulting in MLL/AF9 translocations and leukemogenesis Hum Mol Genet 2000 9: 1671–1679

    Article  CAS  PubMed  Google Scholar 

  40. Mbangkollo D, Burnett R, McCabe N, Thirman M, Gill H, Yu H, Rowley JD, Diaz MO . The human MLL gene: nucleotide sequence, homology to the Drosophila trx zinc-finger domain, and alternative splicing DNA Cell Biol 1995 14: 475–483

    Article  CAS  PubMed  Google Scholar 

  41. Nam DK, Honoki K, Yu M, Yunis JJ . Alternative RNA splicing of the MLL gene in normal and malignant cells Gene 1996 178: 169–175

    Article  CAS  PubMed  Google Scholar 

  42. Caldas C, So CW, MacGregor A, Ford AM, McDonald B, Chan LC, Wiedemann LM . Exon scrambling of MLL transcripts occur commonly and mimic partial genomic duplication of the gene Gene 1998 208: 167–176

    Article  CAS  PubMed  Google Scholar 

  43. Divoky V, Trka JM, Watzinger F, Lion T . Cryptic splice site activation during RNA processing of MLL/AF4 chimeric transcripts in infants with t(4;11) positive ALL Gene 2000 247: 111–118

    Article  CAS  PubMed  Google Scholar 

  44. Ishii E, Eguchi M, Matsuzaki A, Zaizen Y, Yoshidomi S, Kimura N, Takeshita M, Tashiro S, Kamada N, Suita S et al. Granulocytic sarcoma in infant with MLL rearrangement preceding acute monoblastic leukemia with t(10;11)(p11;q23) Leukemia 1995 9: 1970–1974

    CAS  PubMed  Google Scholar 

  45. Kubonishi I, Seto M, Murata N, Kamioka M, Taguchi H, Miyoshi I . Translocation (10;11)(p13;q13) and MLL gene rearrangement in a case of AML (M5a) with aggressive leukemia cutis Cancer Genet Cytogenet 1998 104: 28–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FWO grant Nos G.0028.00 and G.0310.01 and BOF grant No. 011D7699. Heidi Van Limbergen is the recipient of a research grant of the University of Ghent. Bruce Poppe is supported by a grant of the Fund for Scientific Research, Flanders, Belgium (FWO-Vlaanderen).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Limbergen, H., Poppe, B., Janssens, A. et al. Molecular cytogenetic analysis of 10;11 rearrangements in acute myeloid leukemia. Leukemia 16, 344–351 (2002). https://doi.org/10.1038/sj.leu.2402397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402397

Keywords

This article is cited by

Search

Quick links