Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Immunobiology

Somatic hypermutation targeting to intrinsic hotspots of immunoglobulin genes in follicular lymphoma and multiple myeloma

Abstract

In this study, we analyzed the targeting of the somatic hypermutation (SHM) mechanism at specific hotspot sequence motifs in the VH and Vκ genes of 10 follicular lymphoma (FL) cases and the Vκ and Vλ genes of 11 κ- and six λ-light chain expressing multiple myeloma (MM) cases. These sequences were analyzed for targeting of specific motifs, ie certain highly mutable trinucleotides (3-NTPs), the tetranucleotide (4-NTP) RGYW and its complementary, WRCY (where R = purine, Y = pyrimidine and W = A or T). Comparisons were carried out between mutation frequencies in RGYW vs WRCY and the incidence of mutations in complementarity determining region (CDR)-1 vs CDR2 vs CDR3. Statistically significant differences were obtained when comparing: (1) the ratio of mutations in 4-NTPs (RGYW, WRCY, RGYW+WRCY)/mutations in the whole V sequence in MM-Vκ vs MM-Vλ; (2) the total number of mutated 4-NTPs in MM-Vκ vsFL-Vκ; (3) the number of mutated RGYW 4-NTPs in MM-Vκ vsFL-Vκ and FL-VH vs FL-Vκ; (4) the number of mutated WRCY 4-NTPs in MM-Vκ vs FL-Vκ (P = 0.006) and FL-VH vs FL-Vκ; (5) the targeting of RGYW vs WRCY in the CDRs of FL-VH genes. Similar results (regarding statistical significance) were obtained when undertaking intergroup comparisons for 3-NTPs. These findings conform well with relevant data derived from normal peripheral B cells. The differences observed in favor of 4-NTP (RGYW and WRCY) targeting in FL-VH vsFL-Vκ and MM-Vκ vs FL-Vκ may implicate differences in the evolution of SHM coupled with selection in different stages of B cell ontogeny. Several explanations can be offered for the fact that hotspot sequences were not always targeted by SHM in FL and MM: (1) other unrecognized motifs may be targets of SHM; (2) ‘inappropriately’ introduced mutations were fixed and propagated by the neoplastic process; (3) certain FL and MM cases might have lost their ability to correct mutations introduced in classic hotspots due to deficient mismatch-repair (MMR) mechanisms; conversely, in other cases with intact MMR function, the hotspot to non-hotspot targeting of somatic hypermutation is balanced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Tonegawa S . Somatic generation of antibody diversity Nature 1983 302: 575–581

    Article  CAS  PubMed  Google Scholar 

  2. Grawunder U, West RB, Lieber MR . Antigen receptor gene rearrangement Curr Opin Immunol 1998 10: 172–180

    Article  CAS  PubMed  Google Scholar 

  3. Rajewsky K . Clonal selection and learning in the antibody system Nature 1996 381: 751–758

    Article  CAS  PubMed  Google Scholar 

  4. Storb U . Progress in understanding the mechanism and consequences of somatic hypermutation Immunol Rev 1998 162: 5–11

    Article  CAS  PubMed  Google Scholar 

  5. Stevenson F, Sahota S, Zhu D, Ottensmeir C, Chapman C, Oscier D, Hamblin T . Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes Immunol Rev 1998 162: 247–259

    Article  CAS  PubMed  Google Scholar 

  6. Chang B, Casali P . The CDR1 sequences of a major proportion of human germline IgVH genes are inherently susceptible to amino acid replacement Immunol Today 1994 15: 367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Betz AG, Rada C, Pannell R, Milstein C, Neuberger MS . Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots Proc Natl Acad Sci USA 1993 90: 2385–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagner SD, Milstein C, Neuberger MS . Codon bias targets mutation Nature 1995 376: 732

    Article  CAS  PubMed  Google Scholar 

  9. Neuberger NS, Ehrenstein MR, Kllx N, Jolly CJ, Yélamos J, Rada C, Milstein C . Monitoring and interpreting the intrinsic features of somatic hypermutation Immunol Rev 1998 162: 107–116

    Article  CAS  PubMed  Google Scholar 

  10. Stamatopoulos K, Kosmas C, Papadaki T, Pouliou E, Belessi C, Afendaki S, Anagnostou D, Loukopoulos D . Follicular lymphoma immunoglobulin κ light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains Br J Haematol 1997 96: 132–146

    Article  CAS  PubMed  Google Scholar 

  11. Kosmas C, Viniou NA, Stamatopoulos K, Courtenay-Luck NS, Papadaki T, Kollia P, Paterakis G, Anagnostou D, Yataganas X, Loukopoulos D . Analysis of κ light chain variable region in multiple myeloma Br J Haematol 1996 94: 306–317

    Article  CAS  PubMed  Google Scholar 

  12. Kosmas C, Stamatopoulos K, Papadaki T, Belessi C, Yataganas X, Anagnostou D, Loukopoulos D . Somatic hypermutation of immunoglobulin genes: focus on follicular lymphoma and multiple myeloma Immunol Rev 1998 162: 281–292

    Article  CAS  PubMed  Google Scholar 

  13. Dörner T, Foster SJ, Brezinschek H-P, Lipsky PE . Analysis of the targeting of the hypermutational machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements Immunol Rev 1998 162: 161–171

    Article  PubMed  Google Scholar 

  14. Stamatopoulos K, Kosmas C, Belessi C, Kyriazopoulos P, Papadaki T . Molecular insights to the immunopathogenesis of follicular lymphoma Immunol Today 2000 21: 298–305

    Article  CAS  PubMed  Google Scholar 

  15. Stamatopoulos K, Kosmas C, Belessi C, Papadaki T, Afentaki S, Anagnostou D, Loukopoulos D . t(14;18) chromosomal translocation in follicular lymphoma: an event occurring with almost equal frequency both at the D to JH and at later stages in the rearrangement process of the immunoglobulin heavy chain gene locus Br J Haematol 1997 99: 866–872

    Article  CAS  PubMed  Google Scholar 

  16. Klein U, Goossens T, Fischer M, Kanzler H, Braeuninger A, Rajewsky K, Küppers R . Somatic hypermutation in normal and transformed human B cells Immunol Rev 1998 162: 261–280

    Article  CAS  PubMed  Google Scholar 

  17. Sahota SS, Leo R, Hamblin TJ, Stevenson FK . Myeloma VL and VH sequences reveal a complementary imprint of antigen selection in tumor cells Blood 1997 89: 219–226

    CAS  PubMed  Google Scholar 

  18. Kosmas C, Stamatopoulos K, Stavroyianni N, Zoi K, Belessi C, Viniou N, Kollia P, Yataganas X . Origin and diversification of the clonogenic cell in multiple myeloma: lessons from the immunoglobulin repertoire Leukemia 2000 14: 1718–1726

    Article  CAS  PubMed  Google Scholar 

  19. Bakkus MHC, Van Riet I, Van Camp B, Thielemans K . Evidence that the clonogenic cell in multiple myeloma originates from a pre-switched but somatically mutated B cell Br J Haematol 1994 87: 68–74

    Article  CAS  PubMed  Google Scholar 

  20. Vescio RA, Cao J, Hong CH, Lee JC, Wu CH, Der-Danielian M, Wu V, Newman R, Lichtenstein AK, Berenson JR . Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity J Immunol 1995 155: 2487–2497

    CAS  PubMed  Google Scholar 

  21. Wagner SD, Martinelli V, Luzzatto L . Similar patterns of Vκ gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenström's macroglobulinemia, and myeloma Blood 1994 83: 3647–3653

    CAS  PubMed  Google Scholar 

  22. Kosmas C, Stamatopoulos K, Stavroyianni N, Belessi C, Viniou N, Yataganas X . Molecular analysis of immunoglobulin genes in multiple myeloma Leuk Lymphoma 1999 33: 253–263

    Article  CAS  PubMed  Google Scholar 

  23. Küppers R, Klein U, Hansmann M-L, Rajewsky K . Cellular origin of human B-cell lymphomas N Engl J Med 1999 341: 1520–1529

    Article  PubMed  Google Scholar 

  24. Kelsoe G . V(D)J hypermutation and receptor revision: coloring outside the lines Curr Opin Immunol 1999 11: 70–75

    Article  CAS  PubMed  Google Scholar 

  25. Milstein C, Neuberger MS, Staden R . Both DNA strands of antibody genes are hypermutation targets Proc Natl Acad Sci USA 1998 95: 8791–8794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakamura N, Kuze T, Hashimoto Y . Hara V, Hoshi S, Sasaki Y, Shirakawa A, Seto M, Abel M. Analysis of the immunoglobulin heavy chain gene variable region of CD5-positive and -negative diffuse large B cell lymphoma Leukemia 2001 16: 452–457

    Article  Google Scholar 

  27. Capello D, Fais F, Vivenza D, Migliaretti G, Chiorazzi N, Gaidano G, Ferrarini M . Identification of three subgroups of B cell chronic lymphocytic leukemia based upon mutations of BCL-6 and IgV genes Leukemia 2000 14: 811–815

    Article  CAS  PubMed  Google Scholar 

  28. Fais F, Gaidano G, Capello D, Gloghini A, Ghiotto F, Roncella S, Carbone A, Chiorazzi N, Ferrarini M . Immunoglobulin V region gene use and structure suggest antigen selection in AIDS-related primary effusion lymphomas Leukemia 1999 13: 1093–1099

    Article  CAS  PubMed  Google Scholar 

  29. Driessen A, Tierens A, Ectors N, Stul M, Pittaluga S, Geboes K, Delabie J, De Wolf-Peeters C . Primary diffuse large B cell lymphoma of the stomach: analysis of somatic mutations in the rearranged immunoglobulin heavy chain variable genes indicates antigen selection Leukemia 1999 13: 1085–1092

    Article  CAS  PubMed  Google Scholar 

  30. Kosmas C, Stamatopoulos K . Immunoglobulin light chain variable region genes in multiple myeloma Leukemia 1999 13: 827–830

    Article  CAS  PubMed  Google Scholar 

  31. Kon S, Sasamori T, Kasai K, Yamano H, Endo T, Kon H, Kikuchi K . Ongoing somatic mutations of the immunoglobulin gene in MALT lymphoma with widespread MLP type polypoid lesions Leukemia 1998 12: 1495–1497

    Article  CAS  PubMed  Google Scholar 

  32. Korsmeyer SJ, Hieter PA, Ravetch JV, Poplack DG, Waldmann TA, Leder P . Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells Proc Natl Acad Sci USA 1981 78: 7096–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pauza ME, Rehmann JA, LeBien TW . Unusual patterns of immunoglobulin gene rearrangement and expression during human B-cell ontogeny: human B-cells can simultaneously express cell surface κ and λ light chains J Exp Med 1993 178: 139–149

    Article  CAS  PubMed  Google Scholar 

  34. Nossal GJV . Negative selection of lymphocytes Cell 1994 76: 229–239

    Article  CAS  PubMed  Google Scholar 

  35. Kanzler H, Küppers R, Hansmann M-L, Rajewsky K . Hodgkin's and Reed–Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells J Exp Med 1996 184: 1495–1505

    Article  CAS  PubMed  Google Scholar 

  36. Rada C, Ehrenstein MR, Neuberger MS, Milstein C . Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting Immunity 1998 9: 135–141

    Article  CAS  PubMed  Google Scholar 

  37. Farner NL, Dörner T, Lipsky PE . Molecular mechanisms and selection influence the generation of the human Vλ–Jλ gene repertoire J Immunol 1999 162: 2137–2145

    CAS  PubMed  Google Scholar 

  38. Padlan EA . On the nature of antibody combining sites: unusual structural featutres that may confer on these sites an enhanced capacity for binding ligands Proteins 1990 7: 112–124

    Article  CAS  PubMed  Google Scholar 

  39. Raaphorst FM, Raman CS, Nall BT, Teale JM . Molecular mechanisms governing reading frame choice of immunoglobulin diversity genes Immunol Today 1997 18: 37–43

    Article  CAS  PubMed  Google Scholar 

  40. Stamatopoulos K, Kosmas C, Stavioyianni N, Belessi C, Papadaki T . Selection of immunoglobulin diversity gene reading frames in B-cell lymphoproliferative disorders Leukemia 1999 13: 601–604

    Article  CAS  PubMed  Google Scholar 

  41. Millili M, Schiff C, Fougereau M, Tonnelle C . The VDJ repertoire expressed in human pre B cells reflects the selection of bona fide heavy chains Eur J Immunol 1996 26: 63–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belessi, C., Stamatopoulos, K., Stavroyianni, N. et al. Somatic hypermutation targeting to intrinsic hotspots of immunoglobulin genes in follicular lymphoma and multiple myeloma. Leukemia 15, 1772–1778 (2001). https://doi.org/10.1038/sj.leu.2402258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402258

Keywords

This article is cited by

Search

Quick links