Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation

Abstract

The erythro-megakaryoblastic leukemia cell line K562 undergoes erythroid or myeloid differentiation in response to treatment with various inducing agents. We observed that expression of the SH2-containing protein tyrosine phosphatase SHP-1 was induced upon exposure of K562 cells to differentiating agents. Under the same conditions, expression of SHP-2, a close relative of SHP-1, and the more distantly related PTP-1B remained unchanged. Induction of SHP-1 expression correlates with dephosphorylation of a specific and limited set of tyrosyl phosphoproteins, suggesting that dephosphorylation of these proteins may be important for the differentiation process. Importantly, expression of exogenous SHP-1 inhibits K562 proliferation and alters the adhesion properties of these cells, indicating a more differentiated phenotype. Moreover, SHP-1 is found in a complex with both p210 Bcr-Abl and p190 Bcr-Abl, suggesting that it may regulate Bcr-Abl or Bcr-Abl-associated phosphotyrosyl proteins. Our results indicate that induction of SHP-1 expression is important for K562 differentiation in response to various inducers and raise the possibility that functional inactivation of SHP-1 may play a role in progression to blast crisis in chronic myelogenous leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Neel BG . Role of phosphatases in lymphocyte activation Curr Opin Immunol 1997 9: 405–420

    Article  CAS  Google Scholar 

  2. Streuli M . Protein tyrosine phosphatases in signaling Curr Opin Cell Biol 1996 8: 182–188

    Article  CAS  Google Scholar 

  3. Tonks NK, Neel BG . From form to function: signaling by protein tyrosine phosphatases Cell 1996 87: 365–368

    Article  CAS  Google Scholar 

  4. Druker B, Okuda K, Matulonis U, Salgia R, Roberts T, Griffin JD . Tyrosine phosphorylation of rasGAP and associated proteins in chronic myelogenous leukemia cell lines Blood 1992 79: 2215–2220

    CAS  PubMed  Google Scholar 

  5. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E, Xu G, Li JL, Prasad KV, Griffin JD . The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway Oncogene 1996 12: 839–846

    CAS  PubMed  Google Scholar 

  6. Maru Y, Witte ON . The BCR gene encodes a novel serine/threonine kinase activity within a single exon Cell 1991 67: 459–468

    Article  CAS  Google Scholar 

  7. Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM . Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family Proc Natl Acad Sci USA 1995 92: 10282–10286

    Article  CAS  Google Scholar 

  8. McWhirter JR, Wang JY . An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias EMBO J 1993 12: 1533–1546

    Article  CAS  Google Scholar 

  9. Van Etten RA, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA . The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity [published erratum appears in J Cell Biol 1994; Mar;124(5):865] J Cell Biol 1994 124: 325–340

    Article  CAS  Google Scholar 

  10. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene Science 1986 233: 212–214

    Article  CAS  Google Scholar 

  11. Heisterkamp N, Stam K, Groffen J, De Klein A, Grosveld G . Structural organization of the bcr gene and its role in the Ph′ translocation Nature 1985 315: 758–761

    Article  CAS  Google Scholar 

  12. Shtivelman E, Lifshitz B, Gale RP, Canaani E . Fused transcript of abl and bcr genes in chronic myelogenous leukaemia Nature 1985 315: 550–554

    Article  CAS  Google Scholar 

  13. Chan LC, Karhi KK, Rayter SI, Heisterkamp N, Eridani S, Powles R, Lawler SD, Groffen J, Foulkes JG, Greaves MF, Wiedemann LM . A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia Nature 1987 325: 635–637

    Article  CAS  Google Scholar 

  14. Kurzrock R, Shtalrid M, Talpaz M, Kloetzer WS, Gutterman JU . Expression of c-abl in Philadelphia-positive acute myelogenous leukemia Blood 1987 70: 1584–1588

    CAS  PubMed  Google Scholar 

  15. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity J Exp Med 1999 189: 1399–1412

    Article  CAS  Google Scholar 

  16. Daley GQ, Ben-Neriah Y . Implicating the bcr/abl gene in the pathogenesis of Philadelphia chromosome-positive human leukemia Adv Cancer Res 1991 57: 151–184

    Article  CAS  Google Scholar 

  17. Wetzler M, Talpaz M, Van Etten RA, Hirsh-Ginsberg C, Beran M, Kurzrock R . Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation J Clin Invest 1993 92: 1925–1939

    Article  CAS  Google Scholar 

  18. Cortez D, Kadlec L, Pendergast AM . Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis Mol Cell Biol 1995 15: 5531–5541

    Article  CAS  Google Scholar 

  19. Mayer BJ, Jackson PK, Van Etten RA, Baltimore D . Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo Mol Cell Biol 1992 12: 609–618

    Article  CAS  Google Scholar 

  20. Pendergast AM, Muller AJ, Havlik MH, Clark R, McCormick F, Witte ON . Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor Proc Natl Acad Sci USA 1991 88: 5927–5931

    Article  CAS  Google Scholar 

  21. LaMontagne KR, Flint AJ, Franza BR, Pandergast AM, Tonks NK . Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo Mol Cell Biol 1998 18: 2965–2975

    Article  CAS  Google Scholar 

  22. Tauchi T, Feng GS, Shen R, Song HY, Donner D, Pawson T, Broxmeyer HE . SH2-containing phosphotyrosine phosphatase Syp is a target of p210bcr-abl tyrosine kinase J Biol Chem 1994 269: 15381–15387

    CAS  PubMed  Google Scholar 

  23. Gu H, Griffin JD, Neel BG . Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells J Biol Chem 1997 272: 16421–16430

    Article  CAS  Google Scholar 

  24. Liedtke M, Pandey P, Kumar S, Kharbanda S, Kufe D . Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase Oncogene 1998 17: 1889–1892

    Article  CAS  Google Scholar 

  25. Tauchi T, Ohyashiki K, Yamashita Y, Sugimoto S, Toyama K . SH2-containing phosphotyrosine phosphatase SHP-1 is involved in BCR-ABL signal transduction pathways Int J Oncol 1997 11: 471–475

    CAS  PubMed  Google Scholar 

  26. Neel BG, Tonks NK . Protein tyrosine phosphatases in signal transduction Curr Opin Cell Biol 1997 9: 193–204

    Article  CAS  Google Scholar 

  27. Lozzio CB, Lozzio BB . Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome Blood 1975 45: 321–334

    CAS  PubMed  Google Scholar 

  28. Lorenz U, Ravichandran KS, Pei D, Walsh CT, Burakoff SJ, Neel BG . Lck-dependent tyrosyl phosphorylation of the phosphotyosine phosphatase SH-PTP1 in murine T cells Mol Cell Biol 1994 14: 1824–1834

    Article  CAS  Google Scholar 

  29. Chen HE, Chang S, Trub T, Neel BG . Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1 Mol Cell Biol 1996 16: 3685–3697

    Article  CAS  Google Scholar 

  30. Sambrook J, Fritsch E, Maniatis T . Extraction, purification, and analysis of messenger RNA from eukaryotic cells Molecular Cloning. A Laboratory Manual, 2nd edn Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory, New York 1989

    Google Scholar 

  31. Church GM, Gilbert W . Genomic sequencing Proc Natl Acad Sci USA 1984 81: 1991–1994

    Article  CAS  Google Scholar 

  32. Feinberg A, Vogelstein B . A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity Anal Biochem 1983 132: 6–13

    Article  CAS  Google Scholar 

  33. Hahn WC, Menzin E, Saito T, Germain RN, Bierer BE . The complete sequences of plasmids pFNeo and pMH-Neo: convenient expression vectors for high-level expression of eukaryotic genes in hematopoietic cell lines Gene 1993 127: 267–268

    Article  CAS  Google Scholar 

  34. Matthews RJ, Bowne DB, Flores E, Thomas ML . Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences Mol Cell Biol 1992 12: 2396–2405

    Article  CAS  Google Scholar 

  35. Plutzky J, Neel BG, Rosenberg RD . Isolation of a src homology 2-containing tyrosine phosphatase Proc Natl Acad Sci USA 1992 89: 1123–1127

    Article  CAS  Google Scholar 

  36. Yi T, Cleveland JL, Ihle JN . Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12–13 Mol Cell Biol 1992 12: 836–846

    Article  CAS  Google Scholar 

  37. Sutherland JA, Turner AR, Mannoni P, McGann LE, Turc JM . Differentiation of K562 leukemia cells along erythroid, macrophage, and megakaryocyte lineages J Biol Response Mod 1986 5: 250–262

    CAS  PubMed  Google Scholar 

  38. Rowley PT, Ohlsson-Wilhelm BM, Farley BA, LaBella S . Inducers of erythroid differentiation in K562 human leukemia cells Exp Hematol 1981 9: 32–37

    CAS  PubMed  Google Scholar 

  39. Alitalo R . The bcr-c-abl tyrosine kinase activity is extinguished by TPA in K562 leukemia cells FEBS Lett 1987 222: 293–298

    Article  CAS  Google Scholar 

  40. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA, Rohrschneider LR, Griffin JD . BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis Mol Cell Biol 1999 19: 7473–7480

    Article  CAS  Google Scholar 

  41. Frank DA, Sartorelli AC . Alterations in tyrosine phosphorylation during the granulocytic maturation of HL-60 leukemia cells Cancer Res 1988 48: 52–58

    CAS  PubMed  Google Scholar 

  42. Uchida T, Matozaki T, Matsuda K, Suzuki T, Matozaki S, Nakano O, Wada K, Konda Y, Sakamoto C, Kasuga M . Phorbol ester stimulates the activity of a protein tyrosine phosphatase containing SH2 domains (PTP1C) in HL-60 leukemia cells by increasing gene expression J Biol Chem 1993 268: 11845–11850

    CAS  PubMed  Google Scholar 

  43. Zhao Z, Shen SH, Fischer EH . Phorbol ester-induced expression, phosphorylation, and translocation of protein-tyrosine-phosphatase 1C in HL-60 cells Proc Natl Acad Sci USA 1994 91: 5007–5011

    Article  CAS  Google Scholar 

  44. Uesugi Y, Fuse I, Toba K, Kishi K, Furukawa T, Koike T, Aizawa Y . Involvement of SHP-1, a phosphotyrosine phosphatase, during myeloid cell differentiation in acute promyelocytic leukemia cell lines Eur J Haematol 1999 62: 239–245

    Article  CAS  Google Scholar 

  45. Delibrias CC, Floettmann JE, Rowe M, Fearon DT . Downregulated expression of SHP-1 in Burkitt lymphomas and germinal center B lymphocytes J Exp Med 1997 186: 1575–1583

    Article  CAS  Google Scholar 

  46. Shibata K, Nishimura J, Takahira H, Nawata H . Phosphotyrosine phosphatase activity prevents the detection of P210bcr/abl protein in mature cells in chronic myelogenous leukemia even by an immunoblotting technique Leukemia 1989 3: 615–619

    CAS  PubMed  Google Scholar 

  47. Shibata K, Nishimura J, Takahira H, Nawata H . Phosphotyrosine phosphatase activity prevents the detection of p210bcr/abl protein in mature cells in chronic myelogenous leukemia even by an immunoblotting technique Leukemia 1989 3: 615–619

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by P01 DK50654 to BGN and JDG. B Bruecher-Encke was supported by a post-doctoral fellowship from Deutsche Krebshilfe, Mildred Scheel Stiftung.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruecher-Encke, B., Griffin, J., Neel, B. et al. Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation. Leukemia 15, 1424–1432 (2001). https://doi.org/10.1038/sj.leu.2402214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402214

Keywords

This article is cited by

Search

Quick links