Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Metabolic action of peroxisome proliferator-activated receptor γ agonism in rats with exogenous hypercorticosteronemia

Abstract

Objective:

The beneficial metabolic actions of peroxisome proliferator-activated receptor γ (PPARγ) agonism are associated with modifications in adipose tissue metabolism that include a reduction in local glucocorticoid (GC) production by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). This study aimed to assess the contribution of GC attenuation to PPARγ agonism action on gene expression in visceral adipose tissue and global metabolic profile.

Design:

Rats were treated (2 weeks) with the PPARγ agonist rosiglitazone (RSG, 10 mg/kg/day) with concomitant infusion of vehicle (cholesterol implant) or corticosterone (HiCORT, 75 mg/implant/week) to defeat PPARγ-mediated GC attenuation.

Measurements:

mRNA levels of enzymes involved in lipid uptake (and lipoprotein lipase activity), storage, lipolysis, recycling, and oxidation in retroperitoneal white adipose tissue (RWAT). Serum glucose, insulin and lipids, and lipid content of oxidative tissues.

Results:

Whereas HiCORT did not alter RWAT mass, RSG increased the latter (+33%) independently of the corticosterone status. Both HiCORT and RSG increased lipoprotein lipase activity, the mRNA levels of the de novo lipogenesis enzyme fatty acid synthase, and that of the fatty acid retention-promoting enzyme acyl-CoA synthase 1, albeit in a nonadditive fashion. Expression level of the lipolysis enzyme adipose triglyceride lipase was increased additively by HiCORT and RSG. PPARγ agonism increased mRNA of the fatty acid recycling enzymes glycerol kinase and cytosolic phosphoenolpyruvate carboxykinase and those of the fatty acid oxidation enzymes muscle-type carnitine palmitoyltransferase 1 and acyl-CoA oxidase, whereas HiCORT remained without effect. HiCORT resulted in liver steatosis and hyperinsulinemia, which were abrogated by RSG, whereas the HiCORT-induced elevation in serum nonesterified fatty acid levels was only partially prevented. The hypotriglyceridemic action of RSG was maintained in HiCORT rats.

Conclusion:

The GC and PPARγ pathways exert both congruent and opposite actions on specific aspects of adipose tissue metabolism. Both the modulation of adipose gene expression and the beneficial global metabolic actions of PPARγ agonism are retained under imposed high ambient GC, and are therefore independent from PPARγ effects on 11β-HSD1-mediated GC production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Berger J, Moller DE . The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409–435.

    Article  CAS  PubMed  Google Scholar 

  2. Picard F, Auwerx J . PPARγ and glucose homeostasis. Annu Rev Nutr 2002; 22: 167–197.

    Article  CAS  PubMed  Google Scholar 

  3. Berger J, Wagner JA . Physiological and therapeutic roles of peroxisome proliferator-activated receptors. Diabetes Technol Ther 2002; 4: 163–174.

    Article  CAS  PubMed  Google Scholar 

  4. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50: 2094–2099.

    Article  CAS  PubMed  Google Scholar 

  5. Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARγ agonists: a potential mechanism of insulin sensitization. Endocrinology 2002; 143: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  6. Oakes ND, Thalen PG, Jacinto SM, Ljung B . Thiazolidinediones increase plasma-adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability. Diabetes 2001; 50: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  7. Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51: 797–802.

    Article  CAS  PubMed  Google Scholar 

  8. Kim JK, Fillmore JJ, Gavrilova O, Chao L, Higashimori T, Choi H et al. Differential effects of rosiglitazone on skeletal muscle and liver insulin resistance in A-ZIP/F-1 fatless mice. Diabetes 2003; 52: 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  9. Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, Deshaies Y . PPARγ activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 2003; 52: 291–299.

    Article  CAS  PubMed  Google Scholar 

  10. Bogacka I, Xie H, Bray GA, Smith SR . The effect of pioglitazone on peroxisome proliferator-activated receptor γ target genes related to lipid storage in vivo. Diabetes Care 2004; 27: 1660–1667.

    Article  CAS  PubMed  Google Scholar 

  11. Laplante M, Festuccia WT, Soucy G, Gélinas Y, Lalonde J, Berger JP et al. Mechanisms of the depot specificity of peroxisome proliferator-activated receptor γ action on adipose tissue metabolism. Diabetes 2006; 55: 2771–2778.

    Article  CAS  PubMed  Google Scholar 

  12. Hallakou S, Doare L, Foufelle F, Kergoat M, Guerre-Millo M, Berthault MF et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997; 46: 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  13. Tontonoz P, Hu E, Devine J, Beale EG, Spiegelman BM . PPARγ2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1995; 15: 351–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rebuffé-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P . Muscle and adipose tissue morphology and metabolism in Cushing's syndrome. J Clin Endocrinol Metab 1988; 67: 1122–1128.

    Article  PubMed  Google Scholar 

  15. Dallman MF, la Fleur SE, Pecoraro NC, Gomez F, Houshyar H, Akana SF . Minireview: Glucocorticoids – food intake, abdominal obesity wealthy nations in 2004. Endocrinology 2004; 145: 2633–2638.

    Article  CAS  PubMed  Google Scholar 

  16. Berger J, Tanen M, Elbrecht A, Hermanowski-Vosatka A, Moller DE, Wright SD et al. Peroxisome proliferator-activated receptor-γ ligands inhibit adipocyte 11β-hydroxysteroid dehydrogenase type 1 expression and activity. J Biol Chem 2001; 276: 12629–12635.

    Article  CAS  PubMed  Google Scholar 

  17. Seckl JR, Morton NM, Chapman KE, Walker BR . Glucocorticoids and 11β-hydroxysteroid dehydrogenase in adipose tissue. Recent Prog Horm Res 2004; 59: 359–393.

    Article  CAS  PubMed  Google Scholar 

  18. Bélanger C, Hould FS, Lebel S, Biron S, Brochu G, Tchernof A . Omental and subcutaneous adipose tissue steroid levels in obese men. Steroids 2006; 71: 674–682.

    Article  PubMed  Google Scholar 

  19. Folch J, Lees M, Sloane Stanley GH . A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957; 226: 497–509.

    CAS  PubMed  Google Scholar 

  20. Picard F, Naïmi N, Richard D, Deshaies Y . Response of adipose tissue lipoprotein lipase to the cephalic phase of insulin secretion. Diabetes 1999; 48: 452–459.

    Article  CAS  PubMed  Google Scholar 

  21. Aubert J, Darimont C, Safonova I, Ailhaud G, Negrel R . Regulation by glucocorticoids of angiotensinogen gene expression and secretion in adipose cells. Biochem J 1997; 328 (Part 2): 701–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mantha L, Palacios E, Deshaies Y . Modulation of triglyceride metabolism by glucocorticoids in diet-induced obesity. Am J Physiol 1999; 277: R455–R464.

    CAS  PubMed  Google Scholar 

  23. Devenport L, Knehans A, Sundstrom A, Thomas T . Corticosterone's dual metabolic actions. Life Sci 1989; 45: 1389–1396.

    Article  CAS  PubMed  Google Scholar 

  24. Cusin I, Rouru J, Rohner-Jeanrenaud F . Intracerebroventricular glucocorticoid infusion in normal rats: induction of parasympathetic-mediated obesity and insulin resistance. Obes Res 2001; 9: 401–406.

    Article  CAS  PubMed  Google Scholar 

  25. Berthiaume M, Sell H, Lalonde J, Gelinas Y, Tchernof A, Richard D et al. Actions of PPARγ agonism on adipose tissue remodeling, insulin sensitivity, and lipemia in absence of glucocorticoids. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1116–R1123.

    Article  CAS  PubMed  Google Scholar 

  26. Burkey BF, Dong M, Gagen K, Eckhardt M, Dragonas N, Chen W et al. Effects of pioglitazone on promoting energy storage, not expenditure, in brown adipose tissue of obese fa/fa Zucker rats: comparison to CL 316,243. Metabolism 2000; 49: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  27. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99: 2416–2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sell H, Berger JP, Samson P, Castriota G, Lalonde J, Deshaies Y et al. Peroxisome proliferator-activated receptor γ agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 2004; 145: 3925–3934.

    Article  CAS  PubMed  Google Scholar 

  29. Bujalska IJ, Kumar S, Hewison M, Stewart PM . Differentiation of adipose stromal cells: the roles of glucocorticoids and 11β-hydroxysteroid dehydrogenase. Endocrinology 1999; 140: 3188–3196.

    Article  CAS  PubMed  Google Scholar 

  30. Rebuffé-Scrive M . Steroid hormones and distribution of adipose tissue. Acta Med Scand (Suppl) 1988; 723: 143–146.

    Google Scholar 

  31. Edens NK, Moshirfar A, Potter GM, Fried SK, Castonguay TW . Adrenalectomy reduces adiposity by decreasing food efficiency, not direct effects on white adipose tissue. Obes Res 1999; 7: 395–401.

    Article  CAS  PubMed  Google Scholar 

  32. Tomlinson JW, Stewart PM . The functional consequences of 11β-hydroxysteroid dehydrogenase expression in adipose tissue. Horm Metab Res 2002; 34: 746–751.

    Article  CAS  PubMed  Google Scholar 

  33. Rangwala SM, Lazar MA . Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sci 2004; 25: 331–336.

    Article  CAS  PubMed  Google Scholar 

  34. Andrews RC, Walker BR . Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond) 1999; 96: 513–523.

    Article  CAS  Google Scholar 

  35. Bujalska IJ, Kumar S, Stewart PM . Does central obesity reflect ‘Cushing's disease of the omentum’? Lancet 1997; 349: 1210–1213.

    Article  CAS  PubMed  Google Scholar 

  36. Sjogren J, Weck M, Nilsson A, Ottosson M, Bjorntorp P . Glucocorticoid hormone binding to rat adipocytes. Biochim Biophys Acta 1994; 1224: 17–21.

    Article  CAS  PubMed  Google Scholar 

  37. Fried SK, Russell CD, Grauso NL, Brolin RE . Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 1993; 92: 2191–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashby P, Robinson DS . Effects of insulin, glucocorticoids and adrenaline on the activity of rat adipose-tissue lipoprotein lipids. Biochem J 1980; 188: 185–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cigolini M, Smith U . Human adipose tissue in culture. VIII. Studies on the insulin-antagonistic effect of glucocorticoids. Metabolism 1979; 28: 502–510.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Jones Voy B, Urs S, Kim S, Soltani-Bejnood M, Quigley N et al. The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J Nutr 2004; 134: 1032–1038.

    Article  CAS  PubMed  Google Scholar 

  41. Meyuhas O, Reshef L, Gunn JM, Hanson RW, Ballard FJ . Regulation of phosphoenolpyruvate carboxykinase (GTP) in adipose tissue in vivo by glucocorticoids and insulin. Biochem J 1976; 158: 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tordjman J, Khazen W, Antoine B, Chauvet G, Quette J, Fouque F et al. Regulation of glyceroneogenesis and phosphoenolpyruvate carboxykinase by fatty acids, retinoic acids and thiazolidinediones: potential relevance to type 2 diabetes. Biochimie 2003; 85: 1213–1218.

    Article  CAS  PubMed  Google Scholar 

  43. Festuccia WT, Laplante M, Berthiaume M, Gelinas Y, Deshaies Y . PPARγ agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia 2006; 49: 2427–2436.

    Article  CAS  PubMed  Google Scholar 

  44. Boden G, Homko C, Mozzoli M, Showe LC, Nichols C, Cheung P . Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 2005; 54: 880–885.

    Article  CAS  PubMed  Google Scholar 

  45. Lacasa D, Agli B, Giudicelli Y . Permissive action of glucocorticoids on catecholamine-induced lipolysis: direct ‘in vitro’ effects on the fat cell beta-adrenoreceptor-coupled-adenylate cyclase system. Biochem Biophys Res Commun 1988; 153: 489–497.

    Article  CAS  PubMed  Google Scholar 

  46. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW . Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 2004; 279: 48968–48975.

    Article  CAS  PubMed  Google Scholar 

  47. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS . Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004; 279: 47066–47075.

    Article  CAS  PubMed  Google Scholar 

  48. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306: 1383–1386.

    Article  CAS  PubMed  Google Scholar 

  49. Meyuhas O, Reshef L, Ballard FJ, Hanson RW . The effect of insulin and glucocorticoids on the synthesis and degradation of phosphoenolpyruvate carboxykinase (GTP) in rat adipose tissue cultured in vitro. Biochem J 1976; 158: 9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nechushtan H, Benvenisty N, Brandeis R, Reshef L . Glucocorticoids control phosphoenolpyruvate carboxykinase gene expression in a tissue specific manner. Nucleic Acids Res 1987; 15: 6405–6417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Forest C, Tordjman J, Glorian M, Duplus E, Chauvet G, Quette J et al. Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase. Biochem Soc Trans 2003; 31: 1125–1129.

    Article  CAS  PubMed  Google Scholar 

  52. Glenny HP, Brindley DN . The effects of cortisol, corticotropin and thyroxine on the synthesis of glycerolipids and on the phosphatidate phosphohydrolase activity in rat liver. Biochem J 1978; 176: 777–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lehtonen MA, Savolainen MJ, Hassinen IE . Hormonal regulation of hepatic soluble phosphatidate phosphohydrolase. Induction by cortisol in vivo and in isolated perfused rat liver. FEBS Lett 1979; 99: 162–166.

    Article  CAS  PubMed  Google Scholar 

  54. Letteron P, Brahimi-Bourouina N, Robin MA, Moreau A, Feldmann G, Pessayre D . Glucocorticoids inhibit mitochondrial matrix acyl-CoA dehydrogenases and fatty acid beta-oxidation. Am J Physiol 1997; 272: G1141–G1150.

    CAS  PubMed  Google Scholar 

  55. Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem 2006; 281: 2654–2660.

    Article  CAS  PubMed  Google Scholar 

  56. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  57. Todd MK, Watt MJ, Le J, Hevener AL, Turcotte LP . Thiazolidinediones enhance skeletal muscle triacylglycerol synthesis while protecting against fatty acid-induced inflammation and insulin resistance. Am J Physiol Endocrinol Metab 2007; 292: E485–E493.

    Article  CAS  PubMed  Google Scholar 

  58. Djurhuus CB, Gravholt CH, Nielsen S, Mengel A, Christiansen JS, Schmitz OE et al. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab 2002; 283: E172–E177.

    Article  CAS  PubMed  Google Scholar 

  59. Guillaume-Gentil C, Assimacopoulos-Jeannet F, Jeanrenaud B . Involvement of non-esterified fatty acid oxidation in glucocorticoid-induced peripheral insulin resistance in vivo in rats. Diabetologia 1993; 36: 899–906.

    Article  CAS  PubMed  Google Scholar 

  60. Mokuda O, Sakamoto Y . Peripheral insulin sensitivity is decreased by elevated non-esterified fatty acid level in dexamethasone-treated rats. Diabetes Nutr Metab 1999; 12: 252–255.

    CAS  PubMed  Google Scholar 

  61. Klausner H, Heimberg M . Effect of adrenalcortical hormones on release of triglycerides and glucose by liver. Am J Physiol 1967; 212: 1236–1246.

    Article  CAS  PubMed  Google Scholar 

  62. Reaven EP, Kolterman OG, Reaven GM . Ultrastructural and physiological evidence for corticosteroid-induced alterations in hepatic production of very low density lipoprotein particles. J Lipid Res 1974; 15: 74–83.

    CAS  PubMed  Google Scholar 

  63. Carpentier A, Taghibiglou C, Leung N, Szeto L, Van Iderstine SC, Uffelman KD et al. Ameliorated hepatic insulin resistance is associated with normalization of microsomal triglyceride transfer protein expression and reduction in very low density lipoprotein assembly and secretion in the fructose-fed hamster. J Biol Chem 2002; 277: 28795–28802.

    Article  CAS  PubMed  Google Scholar 

  64. Lewis GF . Fatty acid regulation of very low density lipoprotein production. Curr Opin Lipidol 1997; 8: 146–153.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the invaluable professional assistance of Ms Josée Lalonde and Mr Yves Gélinas. This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) to YD. M Berthiaume was the recipient of a PhD Studentship award from CIHR-Laval University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Deshaies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthiaume, M., Laplante, M., Tchernof, A. et al. Metabolic action of peroxisome proliferator-activated receptor γ agonism in rats with exogenous hypercorticosteronemia. Int J Obes 31, 1660–1670 (2007). https://doi.org/10.1038/sj.ijo.0803668

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803668

Keywords

This article is cited by

Search

Quick links