Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation

Abstract

OBJECTIVE:

Our group's previous results on the effects of a grape seed procyanidin extract (GSPE) on adipose metabolism showed that peroxisome proliferator-activated receptor-γ (PPARγ) plays a central role in the lipolytic effects of GSPE on adipocytes. Since PPARγ2 is a main regulator of the differentiation process of adipocytes, we investigated whether GSPE affects the adipogenesis of 3T3-L1 cells.

DESIGN:

We performed a time point screening by treating 3T3-L1 cells with GSPE during the differentiation process for 24 h.

MEASUREMENTS:

Differentiation markers and differential gene expression due to GSPE treatment (using the microarray technique).

RESULTS:

Twenty four hour-GSPE treatment at the onset of differentiation reduces adipose-specific markers and maintains the expression of preadipocyte marker preadipocyte factor-1 (Pref-1) significantly elevated. These effects were not found in other time points. Microarray analysis of gene expression after GSPE treatment at the early stage of differentiation showed a modified gene expression profile in which cell cycle and growth-related genes were downregulated by GSPE.

CONCLUSION:

These results suggest that GSPE affects adipogenesis, mainly at the induction of differentiation, and that procyanidins may have a new role in which they impede the formation of adipose cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Havsteen BH . The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002; 96: 67–202.

    Article  CAS  Google Scholar 

  2. Williams RJ, Spencer JPE, Rice-Evans C . Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 2004; 36: 838–849.

    Article  CAS  Google Scholar 

  3. Llópiz N, Puiggròs F, Céspedes E, Arola L, Ardévol A, Bladé C, Salvadó MJ . Antigenotoxic effect of grape seed procyanidin extract in Fao cells submitted to oxidative stress. J Agric Food Chem 2004; 52: 1083–1087.

    Article  Google Scholar 

  4. Dell'Agli M, Busciala A, Bosisio E . Vascular effects of wine polyphenols. Cardiovasc Res 2004; 63: 593–602.

    Article  CAS  Google Scholar 

  5. Pinent M, Blay M, Blade MC, Salvado MJ, Arola L, Ardevol A . Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 2004; 145: 4985–4990.

    Article  CAS  Google Scholar 

  6. Harmon AW, Joyce BH . Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol 2001; 280: C807–C813.

    Article  CAS  Google Scholar 

  7. Park OJ, Surh Y-J . Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett 2004; 150: 43–56.

    Article  CAS  Google Scholar 

  8. Mochizuki M, Hasegawa N . Stereospecific effects of catechin isomers on insulin induced lipogenesis in 3T3-L1 cells. Phytother Res 2004; 18: 449–450.

    Article  CAS  Google Scholar 

  9. Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, Kawada T, Osawa T . Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun 2004; 316: 149–157.

    Article  CAS  Google Scholar 

  10. Ardévol A, Bladé C, Salvadó MJ, Arola L . Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. Int J Obes and Relat Metab Diord 2000; 24: 319–324.

    Article  Google Scholar 

  11. Ntambi JM, Young-Cheul K . Adipocyte differentiation and gene expression. J Nutr 2000; 130: 3122S–3126S.

    Article  CAS  Google Scholar 

  12. Rosen OM, Smith CJ, Fung C, Rubin CS . Development of hormone receptors and hormone responsiveness in vitro. Effect of prolonged insulin treatment on hexose uptake in 3T3-L1 adipocytes. J Biol Chem 1978; 253: 7579–7583.

    CAS  Google Scholar 

  13. Takamura T, Nohara E, Nagai Y, Kobayashi K-I . Stage-specific effects of a thiazolidinedione on proliferation, differentiation and PPAR[gamma] mRNA expression in 3T3-L1 adipocytes. Eur J Pharmacol 2001; 422: 23–29.

    Article  CAS  Google Scholar 

  14. Muller H, Helin K . The E2F transcription factors: key regulators of cell proliferation. Biochim Biophys Acta—Rev Cancer 2000; 1470: M1–M12.

    Article  CAS  Google Scholar 

  15. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM . Transcriptional regulation of adipogenesis. Genes Dev 2000; 14: 1293–1307.

    CAS  Google Scholar 

  16. Patsouris D, Mandard S, Voshol PJ, Escher P, Tan NS, Havekes LM, Koenig W, Marz W, Tafuri S, Wahli W, Muller M, Kersten S . PPARalpha governs glycerol metabolism. J Clin Invest 2004; 114: 94–103.

    Article  CAS  Google Scholar 

  17. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH . Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153–183.

    CAS  Google Scholar 

  18. Harp JB, Franklin D, Vanderpuije AA, Gimble JM . Differential expression of signal transducers and activators of transcription during human adipogenesis. Biochem Biophys Res Commun 2001; 281: 907–912.

    Article  CAS  Google Scholar 

  19. Kim HS, Liang L, Dean RG, Hausman DB, Hartzell DL, Baile CA . Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures. Biochem Biophys Res Commun 2001; 281: 902–906.

    Article  CAS  Google Scholar 

  20. Castro-Munozledo F, Beltran-Langarica A, Kuri-Harcuch W . Commitment of 3T3-F442A cells to adipocyte differentiation takes place during the first 24–36 h after adipogenic stimulation: TNF-[alpha] inhibits commitment. Exp Cell Res 2003; 284: 161–170.

    Article  Google Scholar 

  21. Shao D, Lazar MA . Peroxisome proliferator activated receptor, CCAAT/enhancer-binding protein, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 1997; 272: 21473–21478.

    Article  CAS  Google Scholar 

  22. Yeh W, Bierer BE, McKnight SL . Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci USA 1995; 92: 11086–11090.

    Article  CAS  Google Scholar 

  23. Pinent M, Bladé MC, Salvadó MJ, Arola L, Ardévol A . Intracellular mediators of procyanidin-induced lipolysis in 3T3-L1 adipocytes. J Agric Food Chem 2005; 53: 262–266.

    Article  CAS  Google Scholar 

  24. Wise LS, Green H . Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J Biol Chem 1979; 254: 273–275.

    CAS  Google Scholar 

  25. Bradford MM . A rapid and sensitive method for quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  Google Scholar 

  26. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W . Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 1992; 97: 493–497.

    Article  CAS  Google Scholar 

  27. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quackenbush J . A concise guide to cDNA microarray analysis. Biotechniques 2000; 29: 548–550, 552–554, 556 passim.

    Article  CAS  Google Scholar 

  28. Pieler R S-CF, Hackl H, Thallinger GG, Trajanoski Z . ArrayNorm: comprehensive normalization and analysis of microarray data. Bioinformatics 2004; 20: 1971–1973.

    Article  Google Scholar 

  29. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R . The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004; 32: D258–D261.

    Article  CAS  Google Scholar 

  30. Sul HS, Smas C, Mei B, Zhou L . Function of pref-1 as an inhibitor of adipocyte differentiation. Int J Obes and Relat Metab Diord 2000; 24: S15–S19.

    Article  CAS  Google Scholar 

  31. Kuzumaki T, Kobayashi T, Ishikawa K . Genistein induces p21Cip1/WAF1expression and blocks the G1 to S phase transition in mouse fibroblast and melanoma cells. Biochem Biophys Res Commun 1998; 251: 291–295.

    Article  CAS  Google Scholar 

  32. Choi YH, Zhang L, Lee WH, Park KY . Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int J Oncol 1998; 13: 391–396.

    CAS  Google Scholar 

  33. Davis JN, Singh B, Bhuiyan M, Sarkar FH . Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 1998; 32: 123–131.

    Article  CAS  Google Scholar 

  34. Liberto M, Cobrinik D . Growth factor-dependent induction of p21CIP1 by the green tea polyphenol, epigallocatechin gallate. Cancer Lett 2000; 154: 151–161.

    Article  CAS  Google Scholar 

  35. Notoya M, Tsukamoto Y, Nishimura H, Woo J-T, Nagai K, Lee I-S, Hagiwara H . Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 2004; 485: 89–96.

    Article  CAS  Google Scholar 

  36. Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM . Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem 2001; 276: 34167.

    Article  CAS  Google Scholar 

  37. Fajas L, Fruchart -C J-C, Auwerx J . Transcriptional control of adipogenesis. Curr Opin Cell Biol 1998; 10: 165–173.

    Article  CAS  Google Scholar 

  38. Tong Q, Hotamisligil GS . Molecular mechanisms of adipocyte differentiation. Rev Endocr Metab Disord 2001; 2: 349–355.

    Article  CAS  Google Scholar 

  39. Burton GR, McGehee J, Robert E . Identification of candidate genes involved in the regulation of adipocyte differentiation using microarray-based gene expression profiling. Nutrition 2004; 20: 109–114.

    Article  CAS  Google Scholar 

  40. Burton GR, Nagarajan R, Peterson CA, McGehee J, Robert E . Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 2004; 329: 167–185.

    Article  CAS  Google Scholar 

  41. Burton GR, Guan Y, Nagarajan R, McGehee J, Robert E . Microarray analysis of gene expression during early adipocyte differentiation. Gene 2002; 293: 21–31.

    Article  CAS  Google Scholar 

  42. Qiu Z, Wei Y, Chen N, Jiang M, Wu J, Liao K . DNA Synthesis and Mitotic Clonal Expansion Is Not a Required Step for 3T3-L1 Preadipocyte Differentiation into Adipocytes. J Biol Chem 2001; 276: 11988–11995.

    Article  CAS  Google Scholar 

  43. Tang Q-Q, Otto TC, Lane DM . Mitotic clonal expansion: A synchronous process required for adipogenesis. Proc Natl Acad Sci USA 2003; 100: 44–49.

    Article  CAS  Google Scholar 

  44. Tang Q-Q, Zhang J-W, Daniel LM . Sequential gene promoter interactions by C/EBP[beta], C/EBP[alpha], and PPAR[gamma] during adipogenesis. Biochem Biophys Res Commun 2004; 318: 213–218.

    Article  CAS  Google Scholar 

  45. Agarwal C, Sharma Y, Zhao J, Agarwal R . A polyphenolic fraction from grape seeds causes irreversible growth inhibition of breast carcinoma MDA-MB468 cells by inhibiting mitogen-activated protein kinases activation and inducing G1 arrest and differentiation. Clin Cancer Res 2000; 6: 2921–2930.

    CAS  Google Scholar 

  46. Casagrande F, Darbon J-M . Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol 2001; 61: 1205–1215.

    Article  CAS  Google Scholar 

  47. Kuo S-M . Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett 1996; 110: 41–48.

    Article  CAS  Google Scholar 

  48. Ahmad N, Gali H, Javed S, Agarwal R . Skin cancer chemopreventive effects of a flavonoid antioxidant silymarin are mediated via impairment of receptor tyrosine kinase signaling and perturbation in cell cycle progression. Biochem Biophys Res Commun 1998; 247: 294–301.

    Article  CAS  Google Scholar 

  49. Darbon JM, Penary M, Escalas N, Casagrande F, Goubin-Gramatica F, Baudouin C, Ducommun B . Distinct Chk2 activation pathways are triggered by genistein and DNA-damaging agents in human melanoma cells. J Biol Chem 2000; 275: 15363–15369.

    Article  CAS  Google Scholar 

  50. Dyson N . The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–2262.

    Article  CAS  Google Scholar 

  51. Bracken AP, Ciro M, Cocito A, Helin K . E2F target genes: unraveling the biology. Trends Biochem Sci 2004; 29: 409–417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant number AGL2002-00078 from the Comisión Interministerial de Ciencia y Tecnología (CICYT) of the Spanish Government and by the Austrian Science Fund (SBF Biomembranes). M Pinent is the recipient of a fellowship from the autonomous government of Catalonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ardévol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinent, M., Bladé, M., Salvadó, M. et al. Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation. Int J Obes 29, 934–941 (2005). https://doi.org/10.1038/sj.ijo.0802988

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802988

Keywords

This article is cited by

Search

Quick links