Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Mechanism for obesity-induced increase in myocardial lipid peroxidation

Abstract

OBJECTIVE: To determine the mechanisms underlying the obesity-induced increase in myocardial lipid peroxidation in the fa/fa rat. We hypothesized that elevated heart work (ie rate-pressure product), an increased rate of superoxide (O2 .−) production, total myocardial lipid content, and/or insufficient antioxidant defenses are potential contributors to myocardial lipid peroxidation in obesity.

DESIGN: Comparative, experimental study of myocardial tissue in 16-week-old lean control (Fa/?, normal diet), obese high-fat fed (Fa/?, 45% dietary fat), and obese fatty (fa/fa, normal diet) Zucker rats.

MEASUREMENTS: Myocardial work (heart rate×systolic blood pressure), myocardial lipid content, oxidative and antioxidant enzyme activities (citrate synthase (CS), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD)), the rate of papillary muscle superoxide radical production in vitro, thiol content, basal and post-oxidative challenge myocardial lipid peroxidation levels using thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides (PEROX) as indices of lipid peroxidation.

RESULTS: Compared to lean controls, the high-fat fed and fatty animals had similar elevations (P<0.05) in myocardial TBARS and PEROX (23%, 25% and 29% 45%, respectively; P<0.05), and elevated susceptibilities to oxidative stress in vitro following exposure to oxidizing agents (P<0.05). Resting heart work was slightly higher (P<0.05) in both the high-fat fed and fatty animals compared to controls. Myocardial lipid content, SOD activities and non-protein thiol (glutathione) levels were elevated (P<0.05) in high-fat fed and fatty animals compared to controls. The rate of superoxide formation by isolated papillary muscles in vitro did not differ among groups (P<0.05). Regression analysis revealed that the myocardial lipid content contributed most to myocardial lipid peroxidation (R 2=0.76, P<0.05).

CONCLUSIONS: Myocardial oxidative injury is closely associated with myocardial lipid content, but is not closely correlated with heart work, insufficient antioxidant defenses or a greater rate of superoxide production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Vincent HK, Powers SK, Stewart DS, Demirel H, Shanely A, Naito H . Obesity and myocardial oxidative stress Int J Obes Relat Metab Disord 1998 22: 1–8.

    Article  Google Scholar 

  2. Girotti AW . Lipid hydroperoxide generation, turnover, and effector action in biological systems J Lipid Res 1998 39: 1529–1542.

    CAS  PubMed  Google Scholar 

  3. McDuffee AT, Senisterra G, Huntley S, Lepock JR, Sekhar KR, Meredith MJ, Borrelli MJ, Morrow JD, Freeman ML . Proteins containing non-native disulfide bonds by oxidative stress can act as signals for the induction of the heat shock response J Cell Phys 1997 171: 143–151.

    Article  CAS  Google Scholar 

  4. Yu B . Cellular defenses against damage from reactive oxygen species Phys Rev 1994 74: 139–162.

    CAS  Google Scholar 

  5. Shattock MJ, Haddock PS . Oxidant stress and the heart: modulation of ion transport mechanisms during ischemia and reperfusion. In: Immunopharmacology of free radical species Academic Press: Baltimore, MD 1991 53–72.

    Chapter  Google Scholar 

  6. Bouchard C, Perusse L . Genetics of obesity A Rev Nutr 1993 13: 337–354.

    Article  CAS  Google Scholar 

  7. Carroll JF, Jones AE, Hester RL, Reinhart GA, Cockrell K, Mizelle HL . Reduced cardiac contractile responsiveness to isoproterenol in obese rabbits Hypertension 1997 30: 1376–1381.

    Article  CAS  PubMed  Google Scholar 

  8. Bray GA . The Zucker-fatty rat: a review Fed Proc 1977 36: 148–153.

    CAS  PubMed  Google Scholar 

  9. Cocoran GB, Salazar DE, Sorge CL . Pharmacokinetic characteristics of the obese overfed rat Int J Obes 1989 13: 69–79.

    Google Scholar 

  10. Alpert MA, Hashimi WW . Obesity and the heart Am J Med Sci 1993 306: 117–123.

    Article  CAS  PubMed  Google Scholar 

  11. Esterbauer H, Gebicki J, Puhl H, Jurgens G . The role of lipid peroxidation and antioxidants in oxidative modification of LDL Free Radical Biol Med 1992 13: 341–390.

    Article  CAS  Google Scholar 

  12. Desci T, Molnar D, Koletzko B . Reduced plasma concentrations of alpha-tocopherol and beta-carotene in obese boys J Pediat 1997 130: 653–655.

    Article  Google Scholar 

  13. Ohrvall M, Tengblad S, Vessby B . Lower tocopherol serum levels in subjects with abdominal adiposity J Intern Med 1993 234: 53–60.

    Article  CAS  PubMed  Google Scholar 

  14. Salazar DE, Sorge CL, Jordan SW, Cocoran GB . Obesity decreases hepatic glutathione concentrations and markedly potentiates allyl alcohol-induced periportal necrosis in the overfed rat Int J Obes Relat Metab Disord 1994 18: 25–33.

    CAS  PubMed  Google Scholar 

  15. L'Abbe MR, Trick KD Beare-Rogers JL . Dietary (n-3) fatty acids affect rat heart, liver and aorta protective enzyme activities and lipid peroxidation J Nutr 1991 121: 1331–1340.

    Article  CAS  PubMed  Google Scholar 

  16. Lamers JMJ, Hartog JM, Verdouw PD, Hulsmann WC . Dietary fatty acids and myocardial function Basic Res Cardiol 1987 81: 209–221.

    Google Scholar 

  17. Brady LJ, Brady PS, Romsos DR Hoppel C . Elevated hepatic mitochondrial and peroxisomal oxidative capacities in fed and starved adult obese (ob/ob) mice Biochem J 1985 231: 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. National Research Council . Nutrient requirements of laboratory animals National Academy of Sciences: Washington, DC 1995.

    Google Scholar 

  19. Ghorbani M, Himms-Hagen J . Treatment with CL316,243, a β3-adrenoceptor agonist, reduces serum leptin in rats with diet-or aging-associated obesity, but not in Zucker rats with genetic (fa/fa) obesity Int J Obes Relat Metab Disord 1998 22: 63–65.

    Article  CAS  PubMed  Google Scholar 

  20. Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL . Increasing prevalence of overweight among US adults: the National Health and Nutrition Examination Survey JAMA 1994 272: 205–211.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Matheny M, Nicholson M, Tumer N, Scarpace PJ . Leptin gene expression increases with age independent of increasing adiposity in rats Diabetics 1997 46: 2035–2039.

    CAS  Google Scholar 

  22. Kitamura K, Jorgenson CR, Gobel FL . Hemodynamic correlates of myocardial oxygen consumption during upright exercise J Appl Physiol 1979 32: 516–522.

    Article  Google Scholar 

  23. Folch J, Lees M, Stanley GHS . A simple method for the isolation and purification of total lipids from animal tissues J Biol Chem 1957 226: 496–509.

    Google Scholar 

  24. Reid MB, Shoji T, Moody MR, Entman ML . Reactive oxygen in skeletal muscle II. Extracellular release of free radicals J Appl Physiol 1992 73: 1805–1809.

    Article  CAS  PubMed  Google Scholar 

  25. Srere P . Citrate synthase Meth Enzymol 1969 13: 3–11.

    Article  CAS  Google Scholar 

  26. Aebi H . Catalase in vitro. Meth Enzymol 1984 105: 121–126.

    Article  CAS  Google Scholar 

  27. Flohe L, Gunzler W . Assays of glutathione peroxidase Meth Enzymol 1984 105: 114–121.

    Article  CAS  Google Scholar 

  28. Oyanagui Y . Reevaluation of assay methods and establishment of a kit for superoxide dismutase activity Ann Biochem 1984 142: 290–296.

    Article  CAS  Google Scholar 

  29. Bradford M . A refined, sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 1976 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  30. Ji LL . Exercise and oxidative stress: role of the cellular antioxidant systems Exercise Sport Sci Rev 1995 23: 135–166.

    Article  CAS  Google Scholar 

  31. Jocelyn P . Spectrophotometric assay of thiols Meth Enzymol 1989 143: 44–55.

    Article  Google Scholar 

  32. Uchiyama M, Mihara M . Determination of malondialdehyde precursors in tissues by thiobarbituric acid test Ann Biochem 1978 86: 271–278.

    Article  CAS  Google Scholar 

  33. Hermes-Lima M, Willmore W, Storey K . Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange formation Free Radical Biol Med 1995 19: 271–280.

    Article  CAS  Google Scholar 

  34. Fridovich I . Quantitative aspects of the production of superoxide anion radicals by milk xanthine oxidase J Biol Chem 1970 245: 4053–4057.

    CAS  PubMed  Google Scholar 

  35. Scott JA, Fischman AJ, Khaw BA, Homcy CJ, Rabito CA . Free radical-mediated membrane depolarization in renal and cardiac cells Biochim Biophys Acta 1987 899: 76–82.

    Article  CAS  PubMed  Google Scholar 

  36. Koneru B, Reddy MC, Dela Torre AN, Patel D, Ippolito T, Ferrante RJ . Studies of warm ischemia in the obese Zucker rat Transplant 1995 59: 942–946.

    Article  CAS  Google Scholar 

  37. Mahfouz MM, Kawano H, Kummerow FA . Effect of cholesterol-rich diets with and without vitamins E and C on the severity of atherosclerosis in rabbits Am J Clin Nutr 1997 66: 1240–1249.

    Article  CAS  PubMed  Google Scholar 

  38. Toborek M, Feldman DL, Henning B . Aortic antioxidant defense and lipid peroxidation in rabbits fed diets supplemented with different animals and plant fats J Am Coll Nutr 1997 16: 32–38.

    Article  CAS  PubMed  Google Scholar 

  39. Izpisua JC, Barber T, Cabo J, Hrelia S, Rossi CA, Castelli CP, Lercker G, Biagi PL, Bordoni A, Lenaz G . Lipid composition, fluidity and enzymatic activities of rat liver plasma and mitochondrial membranes in dietary obese rats Int J Obes 1989 13: 531–542.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant-in-aid from the American Heart-Florida Affiliate (SKP) and a research fellowship award no. 9850001FL (HV). The Patrick J Bird dissertation award provided further support. The authors also thank Dr Charles Wood, Dr Stephen Borst and Dr Stephen Dodd for their contribution to the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HK Vincent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, H., Powers, S., Dirks, A. et al. Mechanism for obesity-induced increase in myocardial lipid peroxidation. Int J Obes 25, 378–388 (2001). https://doi.org/10.1038/sj.ijo.0801536

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801536

Keywords

This article is cited by

Search

Quick links