Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapeutic effect of CXCR3-expressing regulatory T cells on liver, lung and intestinal damages in a murine acute GVHD model

Abstract

Adoptive transfer of CD4+CD25+ regulatory T cells has been shown to have therapeutic effects in experimental graft-vs-host disease (GVHD) models. Chemokines play an important role in the recruitment of alloreactive donor T cells into target organs during GVHD. In this study, we investigated the effectiveness of targeted delivery of CD4+CD25+ regulatory T cells via a transfected chemokine receptor on reduction of organ damage during acute GVHD. High levels of expression of Th1-associated chemokines (CXCL9, CXCL10 and CXCL11) and their receptor CXCR3 were observed in the liver, lung and intestine of GVHD-induced recipient mice. Recipient mice that had undergone transfer of CD4+CD25+Foxp3+ CXCR3-transfected T cells (CXCR3-Treg cells) showed significant amelioration of GVHD changes in the liver, lung and intestine in comparison with recipient mice that had received CD4+CD25+Foxp3+ T cells (Treg cells) or naturally occurring CD4+CD25+ regulatory T cells. This was due to more pronounced migration of CXCR3-Treg cells and their localization for a longer time in Th1-associated chemokine-expressing organs, resulting in stronger suppressive activity. We succeeded in preparing chemokine receptor-expressing Treg cells and demonstrated their ability to ameliorate disease progression upon accumulation in target organs. This method may provide a new therapeutic approach for organ damage in acute GVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bolanos-Meade J . Update on the management of acute graft-versus-host disease. Curr Opin Oncol 2006; 18: 120–125.

    Article  PubMed  Google Scholar 

  2. Ferrara JL, Reddy P . Pathophysiology of graft-versus-host disease. Semin Hematol 2006; 43: 3–10.

    Article  CAS  PubMed  Google Scholar 

  3. Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS . Leukocyte migration and graft-versus-host disease. Blood 2005; 105: 4191–4199.

    Article  CAS  PubMed  Google Scholar 

  4. Murai M, Yoneyama H, Harada A, Yi Z, Vestergaard C, Guo B et al. Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J Clin Invest 1999; 104: 49–57.

    Article  CAS  PubMed  Google Scholar 

  5. Serody JS, Burkett SE, Panoskaltsis-Mortari A, Ng-Cashin J, McMahon E, Matsushima GK et al. T-lymphocyte production of macrophage inflammatory protein-1alpha is critical to the recruitment of CD8(+) T cells to the liver, lung, and spleen during graft-versus-host disease. Blood 2000; 96: 2973–2980.

    CAS  PubMed  Google Scholar 

  6. New JY, Li B, Koh WP, Ng HK, Tan SY, Yap EH et al. T cell infiltration and chemokine expression: relevance to the disease localization in murine graft-versus-host disease. Bone Marrow Transplant 2002; 29: 979–986.

    Article  CAS  PubMed  Google Scholar 

  7. Panoskaltsis-Mortari A, Hermanson JR, Taras E, Wangensteen OD, Serody JS, Blazar BR . Acceleration of idiopathic pneumonia syndrome (IPS) in the absence of donor MIP-1 alpha (CCL3) after allogeneic BMT in mice. Blood 2003; 101: 3714–3721.

    Article  CAS  PubMed  Google Scholar 

  8. Ichiba T, Teshima T, Kuick R, Misek DE, Liu C, Takada Y et al. Early changes in gene expression profiles of hepatic GVHD uncovered by oligonucleotide microarrays. Blood 2003; 102: 763–771.

    Article  CAS  PubMed  Google Scholar 

  9. Sasaki M, Hasegawa H, Kohno M, Inoue A, Ito MR, Fujita S . Antagonist of secondary lymphoid-tissue chemokine (CCR ligand 21) prevents the development of chronic graft-versus-host disease in mice. J Immunol 2003; 170: 588–596.

    Article  CAS  PubMed  Google Scholar 

  10. Rao AR, Quinones MP, Garavito E, Kalkonde Y, Jimenez F, Gibbons C et al. CC chemokine receptor 2 expression in donor cells serves an essential role in graft-versus-host-disease. J Immunol 2003; 171: 4875–4885.

    Article  CAS  Google Scholar 

  11. Duffner U, Lu B, Hildebrandt GC, Teshima T, Williams DL, Reddy P et al. Role of CXCR3-induced donor T-cell migration in acute GVHD. Exp Hematol 2003; 31: 897–902.

    Article  CAS  Google Scholar 

  12. Sugerman PB, Faber SB, Willis LM, Petrovic A, Murphy GF, Pappo J et al. Kinetics of gene expression in murine cutaneous graft-versus-host disease. Am J Pathol 2004; 164: 2189–2202.

    Article  CAS  PubMed  Google Scholar 

  13. Welniak LA, Wang Z, Sun K, Kuziel W, Anver MR, Blazar BR et al. An absence of CCR5 on donor cells results in acceleration of acute graft-vs-host disease. Exp Hematol 2004; 32: 318–324.

    Article  CAS  Google Scholar 

  14. Varona R, Gadenas V, Gomez L, Martinez AC, Marquez G . CCR6 regulates CD4+ T-cell-mediated acute graft-versus-host disease responses. Blood 2005; 106: 18–26.

    Article  CAS  Google Scholar 

  15. Jaksch M, Remberger M, Mattsson J . Increased gene expression of chemokine receptors is correlated with acute graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2005; 11: 280–287.

    Article  CAS  Google Scholar 

  16. Wysocki CA, Burkett SB, Panoskaltsis-Mortari A, Kirby SL, Luster AD, McKinnon K et al. Differential roles for CCR5 expression on donor T cells during graft-versus-host disease based on pretransplant conditioning. J Immunol 2004; 173: 845–854.

    Article  CAS  Google Scholar 

  17. Mapara MY, Leng C, Kim YM, Bronson R, Lokshin A, Luster A et al. Expression of chemokines in GVHD target organs is influenced by conditioning and genetic factors and amplified by GVHR. Biol Blood Marrow Transplant 2006; 12: 623–634.

    Article  CAS  Google Scholar 

  18. Sakaguchi S . Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–562.

    Article  CAS  Google Scholar 

  19. Masteller EL, Tang Q, Bluestone JA . Antigen-specific regulatory T cells–ex vivo expansion and therapeutic potential. Semin Immunol 2006; 18: 103–110.

    Article  CAS  Google Scholar 

  20. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  21. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  PubMed  Google Scholar 

  22. Khattri R, Cox T, Yasayko SA, Ramsdell F . An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 337–342.

    Article  CAS  Google Scholar 

  23. Thornton AM, Shevach EM . CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188: 287–296.

    Article  CAS  PubMed  Google Scholar 

  24. Lim HW, Hillsamer P, Banham AH, Kim CH . Direct suppression of B cells by CD4+CD25+ regulatory T cells. J Immunol 2005; 175: 4180–4183.

    Article  CAS  Google Scholar 

  25. Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H . Human CD4+CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 2003; 63: 4516–4520.

    CAS  Google Scholar 

  26. Cederbom L, Hall H, Ivars F . CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000; 30: 1538–1543.

    Article  CAS  Google Scholar 

  27. Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV . Human CD4+CD25+ regulatory T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 2004; 172: 4676–4680.

    Article  CAS  Google Scholar 

  28. Taylor PA, Lees CJ, Blazar BR . The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002; 99: 3493–3499.

    Article  CAS  Google Scholar 

  29. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S . Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL . CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 2002; 196: 401–406.

    Article  CAS  PubMed  Google Scholar 

  31. Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 2003; 112: 1688–1696.

    Article  CAS  PubMed  Google Scholar 

  32. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  33. Joffre O, Gorsse N, Romagnoli P, Hudrisier D, van Meerwijk JP . Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 2004; 103: 4216–4221.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, Lucas PJ, Gress RE, Levine BL et al. L-selectinhi but not the L-selectinlo CD4+CD25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 2004; 104: 3804–3812.

    Article  CAS  PubMed  Google Scholar 

  35. Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 2005; 105: 2220–2226.

    Article  CAS  PubMed  Google Scholar 

  36. Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood 2005; 106: 3300–3307.

    Article  CAS  PubMed  Google Scholar 

  37. Hanash AM, Levy RB . Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 2005; 105: 1828–1836.

    Article  CAS  PubMed  Google Scholar 

  38. Yamazaki S, Patel M, Harper A, Bonito A, Fukuyama H, Pack M et al. Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci USA 2006; 103: 2758–2763.

    Article  CAS  PubMed  Google Scholar 

  39. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445: 931–935.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY . Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007; 445: 936–940.

    Article  CAS  Google Scholar 

  41. Wan YY, Flavell RA . Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 2007; 445: 766–770.

    Article  CAS  Google Scholar 

  42. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007; 445: 771–775.

    Article  CAS  Google Scholar 

  43. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG . B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2001; 2: 1126–1132.

    Article  CAS  Google Scholar 

  44. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001; 194: 847–853.

    Article  CAS  PubMed  Google Scholar 

  45. Colantonio L, Iellem A, Sinigaglia F, D'Ambrosio D . Skin-homing CLA+ T cells and regulatory CD25+ T cells represent major subsets of human peripheral blood memory T cells migrating in response to CCL1/I-309. Eur J Immunol 2002; 32: 3506–3514.

    Article  CAS  Google Scholar 

  46. Szanya V, Ermann J, Taylor C, Holness C, Fathman CG . The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses 1-selectin and high levels of CCR7. J Immunol 2002; 169: 2461–2465.

    Article  CAS  Google Scholar 

  47. Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A . Homeostasis and energy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol 2002; 3: 33–41.

    Article  CAS  Google Scholar 

  48. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL . Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 1997; 90: 3204–3213.

    CAS  Google Scholar 

  49. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J, Crawford JM et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 1996; 88: 3230–3239.

    CAS  PubMed  Google Scholar 

  50. Cooke KR, Hill GR, Crawford JM, Bungard D, Brinson YS, Delmonte J et al. Tumor necrosis factor-alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J Clin Invest 1998; 102: 1882–1891.

    Article  CAS  PubMed  Google Scholar 

  51. Blazar BR, Taylor PA, McElmurry R, Tian L, Panoskaltsis-Mortari A, Lam S et al. Engraftment of severe combined immune deficient mice receiving allogeneic bone marrow via in utero or postnatal transfer. Blood 1998; 92: 3949–3959.

    CAS  Google Scholar 

  52. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 2003; 31: 1007–1014.

    Article  CAS  Google Scholar 

  53. Kitamura T, Onishi M, Kinoshita S, Shibuya A, Miyajima A, Nolan GP . Efficient screening of retroviral cDNA expression libraries. Proc Natl Acd Sci USA 1995; 92: 9145–9150.

    Google Scholar 

  54. Hasegawa H, Inoue A, Kohno M, Muraoka M, Miyazaki T, Terada M et al. Antagonist of interferon-inducible protein 10/CXCL10 ameliorates the progression of autoimmune sialadenitis in MRL/lpr mice. Arthritis Rheum 2006; 54: 1174–1183.

    Article  CAS  Google Scholar 

  55. Hasegawa H, Kohno M, Sasaki M, Inoue A, Ito MR, Terada M et al. Antagonist of monocyte chemoattractant protein 1 ameliorates the initiation and progression of lupus nephritis and renal vasculitis in MRL/lpr mice. Arthritis Rheum 2003; 48: 2555–2566.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Miho Terada for an excellent technical assistance. This work was supported by a Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, H., Inoue, A., Kohno, M. et al. Therapeutic effect of CXCR3-expressing regulatory T cells on liver, lung and intestinal damages in a murine acute GVHD model. Gene Ther 15, 171–182 (2008). https://doi.org/10.1038/sj.gt.3303051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303051

Keywords

This article is cited by

Search

Quick links