Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Cell-based gene therapy experiments in murine experimental autoimmune encephalomyelitis

Abstract

With the ultimate goal of developing a novel treatment for multiple sclerosis (MS), we have developed a cell-based gene therapy protocol for the treatment of murine experimental autoimmune encephalomyelitis (EAE), a powerful animal model for MS. We have determined that transduced fibroblasts secreting encephalogenic epitopes, when injected into mice with EAE, cause a striking abrogation of disease. Both myelin basic protein (MBP) and proteolipid protein mini-gene constructs expressed in syngeneic fibroblast cells were capable of ameliorating ongoing EAE induced by MBP protein. These experiments are crucial since they suggest that not all encephalogenic epitopes need be secreted for the control of disease. We also demonstrate the success of this protocol when transduced syngeneic, and most importantly, allogeneic cells are sequestered within an implantable chamber. Furthermore, we find that through modifying antigen expression by changing the signal sequence of the mini-gene construct, we were able to significantly reduce the dose of cells required for treatment. These improvements to the mini-gene delivery system are critical for the eventual translation of our protocol to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderson WF . Human gene therapy. Science 1992; 256: 808–813.

    Article  CAS  Google Scholar 

  2. Balicki D, Beutler E . Gene therapy of human disease. Medicine (Baltimore) 2002; 81: 69–86.

    Article  CAS  Google Scholar 

  3. Anderson WF . The current status of clinical gene therapy. Hum Gene Ther 2002; 13: 1261–1262.

    Article  CAS  Google Scholar 

  4. Miller AD . Human gene therapy comes of age. Nature 1992; 357: 455–460.

    Article  CAS  Google Scholar 

  5. Hemmer B, Archelos JJ, Hartung HP . New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 2002; 3: 291–301.

    Article  CAS  Google Scholar 

  6. Martin R, McFarland HF, McFarlin DE . Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992; 10: 153–187.

    Article  CAS  Google Scholar 

  7. Raine CS . Multiple sclerosis: a pivotal role for the T cell in lesion development. Neuropathol Appl Neurobiol 1991; 17: 265–274.

    Article  CAS  Google Scholar 

  8. Whitacre CC, Reingold SC, O'Looney PA . A gender gap in autoimmunity. Science 1999; 283: 1277–1278.

    Article  CAS  Google Scholar 

  9. Barcellos LF et al. Genetic basis for clinical expression in multiple sclerosis. Brain 2002; 125: 150–158.

    Article  CAS  Google Scholar 

  10. Barcellos LF et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72: 710–716.

    Article  CAS  Google Scholar 

  11. Coraddu F et al. HLA typing in the United Kingdom multiple sclerosis genome screen. Neurogenetics 1998; 2: 24–33.

    Article  CAS  Google Scholar 

  12. Jersild C, Svejgaard A, Fog T . HL-A antigens and multiple sclerosis. Lancet 1972; 1: 1240–1241.

    Article  CAS  Google Scholar 

  13. Prat E, Martin R . The immunopathogenesis of multiple sclerosis. J Rehabil Res Dev 2002; 39: 187–199.

    PubMed  Google Scholar 

  14. Baker D, Hankey DJ . Gene therapy in autoimmune, demyelinating disease of the central nervous system. Gene Therapy 2003; 10: 844–853.

    Article  CAS  Google Scholar 

  15. Furlan R, Pluchino S, Martino G . The therapeutic use of gene therapy in inflammatory demyelinating diseases of the central nervous system. Curr Opin Neurol 2003; 16: 385–392.

    Article  CAS  Google Scholar 

  16. Mathisen PM, Tuohy VK . Gene therapy in experimental autoimmune encephalomyelitis. J Clin Immunol 2000; 20: 327–333.

    Article  CAS  Google Scholar 

  17. Seroogy CM, Fathman CG . The application of gene therapy in autoimmune diseases. Gene Therapy 2000; 7: 9–13.

    Article  CAS  Google Scholar 

  18. Tarner IH et al. Treatment of autoimmune disease by adoptive cellular gene therapy. Ann NY Acad Sci 2003; 998: 512–519.

    Article  CAS  Google Scholar 

  19. Brown AM, McFarlin DE . Relapsing experimental allergic encephalomyelitis in the SJL/J mouse. Lab Invest 1981; 45: 278–284.

    CAS  PubMed  Google Scholar 

  20. Kuchroo VK et al. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 2002; 20: 101–123.

    Article  CAS  Google Scholar 

  21. Zhang J et al. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994; 179: 973–984.

    Article  CAS  Google Scholar 

  22. Sobel RA, Greer JM, Kuchroo VK . Minireview: autoimmune responses to myelin proteolipid protein. Neurochem Res 1994; 19: 915–921.

    Article  CAS  Google Scholar 

  23. Tuohy VK et al. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 1989; 142: 1523–1527.

    CAS  PubMed  Google Scholar 

  24. Tuohy VK et al. Myelin proteolipid protein: minimum sequence requirements for active induction of autoimmune encephalomyelitis in SWR/J and SJL/J mice. J Neuroimmunol 1992; 39: 67–74.

    Article  CAS  Google Scholar 

  25. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD . Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 1995; 182: 75–85.

    Article  CAS  Google Scholar 

  26. Vanderlugt CL et al. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J Immunol 2000; 164: 670–678.

    Article  CAS  Google Scholar 

  27. Lehmann PV, Forsthuber T, Miller A, Sercarz EE . Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992; 358: 155–157.

    Article  CAS  Google Scholar 

  28. Tuohy VK et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 1998; 164: 93–100.

    Article  CAS  Google Scholar 

  29. Vanderlugt CL, Miller SD . Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002; 2: 85–95.

    Article  CAS  Google Scholar 

  30. Weiner LP et al. Gene therapy in a murine model for clinical application to multiple sclerosis. Ann Neurol 2004; 55: 390–399.

    Article  CAS  Google Scholar 

  31. Sakai K et al. Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J Neuroimmunol 1988; 19: 21–32.

    Article  CAS  Google Scholar 

  32. Martin R et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 1990; 145: 540–548.

    CAS  PubMed  Google Scholar 

  33. Ota K et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990; 346: 183–187.

    Article  CAS  Google Scholar 

  34. Pelfrey CM et al. Quantification of self-recognition in multiple sclerosis by single-cell analysis of cytokine production. J Immunol 2000; 165: 1641–1651.

    Article  CAS  Google Scholar 

  35. Tejada-Simon MV, Hong J, Rivera VM, Zhang JZ . Reactivity pattern and cytokine profile of T cells primed by myelin peptides in multiple sclerosis and healthy individuals. Eur J Immunol 2001; 31: 907–917.

    Article  CAS  Google Scholar 

  36. Gierasch LM . Signal sequences. Biochem 1989; 28: 923–930.

    Article  CAS  Google Scholar 

  37. Huang S, Paulauskis JD, Kobzik L . Rat KC cDNA cloning and mRNA expression in lung macrophages and fibroblasts. Biochem Biophys Res Commun 1992; 184: 922–929.

    Article  CAS  Google Scholar 

  38. Tibell A et al. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmunosuppressed humans. Cell Transplant 2001; 10: 591–599.

    Article  CAS  Google Scholar 

  39. Yanay O et al. Long-term erythropoietin gene expression from transduced cells in bioisolator devices. Hum Gene Ther 2003; 14: 1587–1593.

    Article  CAS  Google Scholar 

  40. Goodin DS et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 2002; 58: 169–178.

    Article  CAS  Google Scholar 

  41. Hohlfeld R, Wiendl H . The ups and downs of multiple sclerosis therapeutics. Ann Neurol 2001; 49: 281–284.

    Article  CAS  Google Scholar 

  42. Martin R, Sturzebecher CS, McFarland HF . Immunotherapy of multiple sclerosis: where are we? Where should we go? Nat Immunol 2001; 2: 785–788.

    Article  CAS  Google Scholar 

  43. Steinman L . Immunotherapy of multiple sclerosis: the end of the beginning. Curr Opin Immunol 2001; 13: 597–600.

    Article  CAS  Google Scholar 

  44. von Herrath MG, Harrison LC . Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol 2003; 3: 223–232.

    Article  CAS  Google Scholar 

  45. Chen LZ et al. Gene therapy in allergic encephalomyelitis using myelin basic protein-specific T cells engineered to express latent transforming growth factor-beta1. Proc Natl Acad Sci USA 1998; 95: 12516–12521.

    Article  CAS  Google Scholar 

  46. Costa GL et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 2001; 167: 2379–2387.

    Article  CAS  Google Scholar 

  47. Mathisen PM et al. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J Exp Med 1997; 186: 159–164.

    Article  CAS  Google Scholar 

  48. Shaw MK et al. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 1997; 185: 1711–1714.

    Article  CAS  Google Scholar 

  49. Yin L et al. Pre-emptive targeting of the epitope spreading cascade with genetically modified regulatory T cells during autoimmune demyelinating disease. J Immunol 2001; 167: 6105–6112.

    Article  CAS  Google Scholar 

  50. Garren H et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 2001; 15: 15–22.

    Article  CAS  Google Scholar 

  51. Chen CC, Rivera A, Dougherty JP, Ron Y . Complete protection from relapsing experimental autoimmune encephalomyelitis induced by syngeneic B cells expressing the autoantigen. Blood 2004; 103: 4616–4618.

    Article  CAS  Google Scholar 

  52. Melo ME et al. Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J Immunol 2002; 168: 4788–4795.

    Article  CAS  Google Scholar 

  53. Pedotti R et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol 2001; 2: 216–222.

    Article  CAS  Google Scholar 

  54. Anderson AC et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J Exp Med 2000; 191: 761–770.

    Article  CAS  Google Scholar 

  55. Steinman L . Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 1999; 24: 511–514.

    Article  CAS  Google Scholar 

  56. Tian J et al. Antigen-based immunotherapy for autoimmune disease: from animal models to humans? Immunol Today 1999; 20: 190–195.

    Article  CAS  Google Scholar 

  57. Bielekova B et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000; 6: 1167–1175.

    Article  CAS  Google Scholar 

  58. Bielekova B, Martin R . Antigen-specific immunomodulation via altered peptide ligands. J Mol Med 2001; 79: 552–565.

    Article  CAS  Google Scholar 

  59. Genain CP, Zamvil SS . Specific immunotherapy: one size does not fit all. Nat Med 2000; 6: 1098–1100.

    Article  CAS  Google Scholar 

  60. Kappos L et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 2000; 6: 1176–1182.

    Article  CAS  Google Scholar 

  61. Mestas J, Hughes CCW . Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172: 2731–2738.

    Article  CAS  Google Scholar 

  62. Chou YK et al. Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 1992; 38: 105–113.

    Article  CAS  Google Scholar 

  63. Correale J et al. Isolation and characterization of autoreactive proteolipid protein-peptide specific T-cell clones from multiple sclerosis patients. Neurology 1995; 45: 1370–1378.

    Article  CAS  Google Scholar 

  64. Trotter JL et al. T cell recognition of myelin proteolipid protein and myelin proteolipid protein peptides in the peripheral blood of multiple sclerosis and control subjects. J Neuroimmunol 1998; 84: 172–178.

    Article  CAS  Google Scholar 

  65. Freshney RI . Culture of Animal Cells, 2nd edn. Alan R. Liss, Inc.: New York, 1987.

    Google Scholar 

  66. Oi VT, Jones PP, Goding JW, Herzenberg LA . Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol 1978; 81: 115–120.

    CAS  PubMed  Google Scholar 

  67. Ozato K, Hansen TH, Sachs DH . Monoclonal antibodies to mouse MHC antigens. II. Antibodies to the H-2Ld antigen, the products of a third polymorphic locus of the mouse major histocompatibility complex. J Immunol 1980; 125: 2473–2477.

    CAS  PubMed  Google Scholar 

  68. Kozak M . Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 1984; 12: 857–872.

    Article  CAS  Google Scholar 

  69. Fling SP et al. CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc Natl Acad Sci USA 2001; 98: 1160–1165.

    Article  CAS  Google Scholar 

  70. Pear WS, Scott ML, Nolan GP In: Robbins P (ed). Methods in Molecular Medicine: Gene Therapy Protocols. Humana Press: Totowa, NJ, 1996, pp 41–57.

    Google Scholar 

Download references

Acknowledgements

We thank Drs French Anderson (USC), Wendy Gilmore (USC), and Brett Lund (USC) for helpful discussions. We also thank Ray Ortiz (DDF Services) for histology sectioning and staining of the chamber, Dr David Hinton (USC) for photomicrographs, Scott Fredericksen (TheraCyte) for advice on chamber handling, and Bruce Hess (Corixa) for production of retroviral particles. We acknowledge the USC/Norris Cancer Center Microchemistry Core Facility for the synthesis of peptides and oligonucleotides, and for automated DNA sequencing. This study was funded by grants from the National Institutes of Health (R01 NS35240, LPW), the National Multiple Sclerosis Society (PP0535, MM), the Conrad Hilton Foundation, the Nancy Davis Foundation, the Kenneth Norris Foundation, and Corixa Corporation. We are grateful to Holly Weisbuch for manuscript preparation and editorial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louie, K., Weiner, L., Du, J. et al. Cell-based gene therapy experiments in murine experimental autoimmune encephalomyelitis. Gene Ther 12, 1145–1153 (2005). https://doi.org/10.1038/sj.gt.3302503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302503

Keywords

This article is cited by

Search

Quick links