Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coexpression of Flt3 ligand and GM-CSF genes modulates immune responses induced by HER2/neu DNA vaccine

Abstract

DNA vaccine and dendritic cells (DCs)-based vaccine have emerged as promising strategies for cancer immunotherapy. Fms-like tyrosine kinase 3-ligand (Flt3L) and granulocyte–macrophage-colony-stimulating factor (GM-CSF) have been exploited for the expansion of DC. It was reported previously that combination of plasmid encoding GM-CSF with HER2/neu DNA vaccine induced predominantly CD4+ T-cell-mediated antitumor immune response. In this study, we investigated the modulation of immune responses by murine Flt3L and GM-CSF, which acted as genetic adjuvants in the forms of bicistronic (pFLAG) and monocistronic (pFL and pGM) plasmids for HER2/neu DNA vaccine (pN-neu). Coexpression of Flt3L and GM-CSF significantly enhanced maturation and antigen-presentation abilities of splenic DC. Increased numbers of infiltrating DC at the immunization site, higher interferon-γ production, and enhanced cytolytic activities by splenocytes were prominent in mice vaccinated with pN-neu in conjunction with pFLAG. Importantly, a potent CD8+ T-cell-mediated antitumor immunity against bladder tumors naturally overexpressing HER2/neu was induced in the vaccinated mice. Collectively, our results indicate that murine Flt3L and GM-CSF genes coexpressed by a bicistronic plasmid modulate the class of immune responses and may be superior to those codelivered by two separate monocistronic plasmids as the genetic adjuvants for HER2/neu DNA vaccine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Oelke M, Moehrle U, Chen JL, Behringer D, Cerundolo V, Lindemann A et al. Generation and purification of CD8+ melan-A-specific cytotoxic T lymphocytes for adoptive transfer in tumor immunotherapy. Clin Cancer Res 2000; 6: 1997–2005.

    CAS  PubMed  Google Scholar 

  2. Randolph GJ, Angeli V, Swartz MA . Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005; 5: 617–628.

    Article  CAS  PubMed  Google Scholar 

  3. Daro E, Butz E, Smith J, Teepe M, Maliszewski CR, McKenna HJ . Comparison of the functional properties of murine dendritic cells generated in vivo with Flt3 ligand, GM-CSF and Flt3 ligand plus GM-SCF. Cytokine 2002; 17: 119–130.

    Article  CAS  PubMed  Google Scholar 

  4. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 1996; 184: 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  5. Kataoka K, McGhee JR, Kobayashi R, Fujihashi K, Shizukuishi S, Fujihashi K . Nasal Flt3 ligand cDNA elicits CD11c+CD8+ dendritic cells for enhanced mucosal immunity. J Immunol 2004; 172: 3612–3619.

    Article  CAS  PubMed  Google Scholar 

  6. Angelov GS, Tomkowiak M, Marcais A, Leverrier Y, Marvel J . Flt3 ligand-generated murine plasmacytoid and conventional dendritic cells differ in their capacity to prime naive CD8T cells and to generate memory cells in vivo. J Immunol 2005; 175: 189–195.

    Article  CAS  PubMed  Google Scholar 

  7. Miller G, Pillarisetty VG, Shah AB, Lahrs S, Xing Z, DeMatteo RP . Endogenous granulocyte–macrophage colony-stimulating factor overexpression in vivo results in the long-term recruitment of a distinct dendritic cell population with enhanced immunostimulatory function. J Immunol 2002; 169: 2875–2885.

    Article  CAS  PubMed  Google Scholar 

  8. Bernt KM, Ni S, Tieu AT, Lieber A . Assessment of a combined, adenovirus-mediated oncolytic and immunostimulatory tumor therapy. Cancer Res 2005; 65: 4343–4352.

    Article  CAS  PubMed  Google Scholar 

  9. Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res 2001; 61: 1080–1088.

    CAS  PubMed  Google Scholar 

  10. Fong CL, Hui KM . Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL3-hFLex plasmid DNA and immunogenic peptides. Gene Therapy 2002; 9: 1127–1138.

    Article  CAS  PubMed  Google Scholar 

  11. Peretz Y, Zhou ZF, Halwani F, Prud’homme GJ . In vivo generation of dendritic cells by intramuscular codelivery of FLT3 ligand and GM-CSF plasmids. Mol Ther 2002; 6: 407–414.

    Article  CAS  PubMed  Google Scholar 

  12. Chang SY, Lee KC, Ko SY, Ko HJ, Kang CY . Enhanced efficacy of DNA vaccination against Her-2/neu tumor antigen by genetic adjuvants. Int J Cancer 2004; 111: 86–95.

    Article  CAS  PubMed  Google Scholar 

  13. Fong CL, Mok CL, Hui KM . Intramuscular immunization with plasmid coexpressing tumour antigen and Flt-3L results in potent tumour regression. Gene Therapy 2006; 13: 245–256.

    Article  CAS  PubMed  Google Scholar 

  14. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI et al. The neu oncogene: an erb-B-related gene encoding a 185 000-Mr tumour antigen. Nature 1984; 312: 513–516.

    Article  CAS  PubMed  Google Scholar 

  15. Bargmann CI, Hung MC, Weinberg RA . The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 1986; 319: 226–230.

    Article  CAS  PubMed  Google Scholar 

  16. Foy TM, Bannink J, Sutherland RA, McNeill PD, Moulton GG, Smith J et al. Vaccination with Her-2/neu DNA or protein subunits protects against growth of a Her-2/neu-expressing murine tumor. Vaccine 2001; 19: 2598–2606.

    Article  CAS  PubMed  Google Scholar 

  17. Curcio C, Di Carlo E, Clynes R, Smyth MJ, Boggio K, Quaglino E et al. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J Clin Invest 2003; 111: 1161–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pilon SA, Kelly C, Wei WZ . Broadening of epitope recognition during immune rejection of ErbB-2-positive tumor prevents growth of ErbB-2-negative tumor. J Immunol 2003; 170: 1202–1208.

    Article  CAS  PubMed  Google Scholar 

  19. Lindencrona JA, Preiss S, Kammertoens T, Schuler T, Piechocki M, Wei WZ et al. CD4+ T cell-mediated HER-2/neu-specific tumor rejection in the absence of B cells. Int J Cancer 2004; 109: 259–264.

    Article  CAS  PubMed  Google Scholar 

  20. Shiau AL, Chen CC, Yo YT, Chu CY, Wang SY, Wu CL . Enhancement of humoral and cellular immune responses by an oral Salmonella choleraesuis vaccine expressing porcine prothymosin alpha. Vaccine 2005; 23: 5563–5571.

    Article  CAS  PubMed  Google Scholar 

  21. Ercolini AM, Machiels JP, Chen YC, Slansky JE, Giedlen M, Reilly RT et al. Identification and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumors from HER-2/neu-transgenic mice. J Immunol 2003; 170: 4273–4280.

    Article  CAS  PubMed  Google Scholar 

  22. Hsieh CL, Pang VF, Chen DS, Hwang LH . Regression of established mouse leukemia by GM-CSF-transduced tumor vaccine: implications for cytotoxic T lymphocyte responses and tumor burdens. Hum Gene Ther 1997; 8: 1843–1854.

    Article  CAS  PubMed  Google Scholar 

  23. Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL et al. Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther 2004; 10: 290–301.

    Article  CAS  PubMed  Google Scholar 

  24. Lee CH, Wu CL, Shiau AL . Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther 2005; 12: 175–184.

    Article  CAS  PubMed  Google Scholar 

  25. Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS et al. Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 2004; 114: 1334–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corr M, von Damm A, Lee DJ, Tighe H . In vivo priming by DNA injection occurs predominantly by antigen transfer. J Immunol 1999; 163: 4721–4727.

    CAS  PubMed  Google Scholar 

  27. Shaw SG, Maung AA, Steptoe RJ, Thomson AW, Vujanovic NL . Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anti-cancer and anti-viral therapy. J Immunol 1998; 161: 2817–2824.

    CAS  PubMed  Google Scholar 

  28. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5: 405–411.

    Article  CAS  PubMed  Google Scholar 

  29. Tourkova IL, Yamabe K, Chatta G, Shurin GV, Shurin MR . NK cells mediate Flt3 ligand-induced protection of dendritic cell precursors in vivo from the inhibition by prostate carcinoma in the murine bone marrow metastasis model. J Immunother 2003; 26: 468–472.

    Article  CAS  PubMed  Google Scholar 

  30. Mwangi W, Brown WC, Lewin HA, Howard CJ, Hope JC, Baszler TV et al. DNA-encoded fetal liver tyrosine kinase 3 ligand and granulocyte macrophage-colony-stimulating factor increase dendritic cell recruitment to the inoculation site and enhance antigen-specific CD4+ T cell responses induced by DNA vaccination of outbred animals. J Immunol 2002; 169: 3837–3846.

    Article  CAS  PubMed  Google Scholar 

  31. Kwissa M, Kroger A, Hauser H, Reimann J, Schirmbeck R . Cytokine-facilitated priming of CD8+ T cell responses by DNA vaccination. J Mol Med 2003; 81: 91–101.

    Article  CAS  PubMed  Google Scholar 

  32. Weigel BJ, Nath N, Taylor PA, Panoskaltsis-Mortari A, Chen W, Krieg AM et al. Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood 2002; 100: 4169–4176.

    Article  CAS  PubMed  Google Scholar 

  33. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999; 96: 1036–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 1993; 75: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  35. Alsheikhly AR, Zweiri J, Walmesley AJ, Watson AJ, Christmas SE . Both soluble and membrane-bound forms of Flt3 ligand enhance tumor immunity following ‘suicide’ gene therapy in a murine colon carcinoma model. Cancer Immunol Immunother 2004; 53: 946–954.

    Article  CAS  PubMed  Google Scholar 

  36. Berhanu A, Huang J, Alber SM, Watkins SC, Storkus WJ . Combinational FLt3 ligand and granulocyte macrophage colony-stimulating factor treatment promotes enhanced tumor infiltration by dendritic cells and antitumor CD8(+) T-cell cross-priming but is ineffective as a therapy. Cancer Res 2006; 66: 4895–4903.

    Article  CAS  PubMed  Google Scholar 

  37. Stagg J, Wu JH, Bouganim N, Galipeau J . Granulocyte–macrophage colony-stimulating factor and interleukin-2 fusion cDNA for cancer gene immunotherapy. Cancer Res 2004; 64: 8795–8799.

    Article  CAS  PubMed  Google Scholar 

  38. Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL, Barber BH . Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 1997; 158: 4591–4601.

    CAS  PubMed  Google Scholar 

  39. Salesse S, Lagarde V, Ged C, de Verneuil H, Reiffers J, Mahon FX . Retroviral coexpression of IFN-alpha and IFN-gamma genes and inhibitory effects in chronic myeloid leukemia cells. J Interferon Cytokine Res 2000; 20: 577–587.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SW, Cho JH, Sung YC . Optimal induction of hepatitis C virus envelope-specific immunity by bicistronic plasmid DNA inoculation with the granulocyte–macrophage colony-stimulating factor gene. J Virol 1998; 72: 8430–8436.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chaudhry UI, Katz SC, Kingham TP, Pillarisetty VG, Raab JR, Shah AB et al. In vivo overexpression of Flt3 ligand expands and activates murine spleen natural killer dendritic cells. FASEB J 2006; 20: 982–984.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Huang H, Chen Z, Zong L, Xiang J . Dendritic cells engineered to express the Flt3 ligand stimulate type I immune response, and induce enhanced cytoxic T and natural killer cell cytotoxicities and antitumor immunity. J Gene Med 2003; 5: 668–680.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to TC Wu (Department of Pathology, Johns Hopkins University), LH Hwang (Hepatitis Research Center, National Taiwan University Hospital, Taiwan), and MD Lai (Department of Biochemistry and Molecular Biology, National Cheng Kung University, Taiwan) for providing pFL, pGEM-4/GM-CSF and pRc/CMV-N′-neu plasmids, respectively. This work was supported by Grants NSC 89-2318-B-006-014-M51 and 90-2318-B-006-006-M51 to A-L Shiau and NSC 89-2318-B-006-013-M51 and 90-2318-B-006-003-M51 to C-L Wu from National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C-L Wu or A-L Shiau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yo, YT., Hsu, KF., Shieh, GS. et al. Coexpression of Flt3 ligand and GM-CSF genes modulates immune responses induced by HER2/neu DNA vaccine. Cancer Gene Ther 14, 904–917 (2007). https://doi.org/10.1038/sj.cgt.7701081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701081

Keywords

Search

Quick links