Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical translation of wireless soft robotic medical devices

Abstract

Small-scale wireless soft robotics can be designed as implantable, interventional or wearable devices for various biomedical applications. Their flexibility, dexterity, adaptability and safe interactions with biological environments make them promising candidates for enabling precise and remote healthcare and disease diagnosis. However, the clinical translation of wireless soft robotic medical devices remains challenging. In this Review, we provide a comprehensive overview of the robotic technologies, the navigation methods, the dexterous functions and the translational challenges of wireless soft robotic medical devices. We first discuss safety and biocompatibility from a biological and technical perspective and then examine navigation methods for overcoming biological barriers for delivery, mobility and retrieval, highlighting dexterous medical functions at small scales. Finally, we identify key product development challenges, as well as the regulatory and ethical considerations that should be addressed to enable the clinical translation of wireless soft robotic medical devices.

Key points

  • Small-scale wireless soft robotic devices are promising for various clinical applications, but important challenges remain to be addressed to enable their clinical translation.

  • Proof-of-concept devices have been designed with various navigation and control strategies for overcoming biological barriers and for allowing device deployment, mobility and retrieval from the body.

  • Biocompatibility, navigation methods, basic and dexterous functions, and fabrication challenges should be solved interdependently with a holistic perspective.

  • Ethical concerns, regulatory requirements, scalable production techniques and financial sustainability should be addressed to enable the clinical translation of small-scale wireless soft robotic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development and design of wireless soft robotic medical devices.
Fig. 2: Patient-centric considerations for the clinical translation of wireless soft robotic medical devices.
Fig. 3: Actuation mechanisms, functions and operation environments of wireless soft robotic medical devices.
Fig. 4: Clinical translation process for small-scale soft robotic devices for medical applications.

Similar content being viewed by others

References

  1. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ren, Z. & Sitti, M. Design and build of small-scale magnetic soft-bodied robots with multimodal locomotion. Nat. Protoc. https://doi.org/10.1038/s41596-023-00916-6 (2023). This article explains the key points for the design and fabrication of magnetic soft robots.

  3. Wang, T. et al. Adaptive wireless millirobotic locomotion into distal vasculature. Nat. Commun. 13, 4465 (2022). This article describes an important example of a targeted biomedical application for wireless mobile soft robotic devices.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018). This article describes the first wireless mobile soft millirobot with multimodal locomotion capability, inspired by soft-bodied small-scale animals.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wu, S., Hu, W., Ze, Q., Sitti, M. & Zhao, R. Multifunctional magnetic soft composites: a review. Multifunct. Mater. 3, 042003 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, M. et al. Miniature coiled artificial muscle for wireless soft medical devices. Sci. Adv. 8, eabm5616 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, C., Wu, Y., Dong, X., Armacki, M. & Sitti, M. In situ sensing physiological properties of biological tissues using wireless miniature soft robots. Sci. Adv. 9, eadg3988 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Soon, R. H. et al. On-demand anchoring of wireless soft miniature robots on soft surfaces. Proc. Natl Acad. Sci. USA 119, e2207767119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soon, R. H. et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 14, 3320 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dogan, N. O. et al. Remotely guided immunobots engaged in anti-tumorigenic phenotypes for targeted cancer immunotherapy. Small 18, e2204016 (2022).

    Article  PubMed  Google Scholar 

  11. Sridhar, V. et al. Designing covalent organic framework-based light-driven microswimmers towards therapeutic applications. Adv. Mater. 35, 2301126 (2023).

    Article  CAS  Google Scholar 

  12. Noritsugu, T. Human-friendly soft actuator. Int. J. Jpn. Soc. Precis. Eng. 31, 92–96 (1997).

    Google Scholar 

  13. Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Hermanson, G. T. Bioconjugate Techniques (Academic Press, 2013).

  17. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Edn Engl. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  19. Lendlein, A. & Kelch, S. Shape-memory polymers. Angew. Chem. Int. Edn Engl. 41, 2034–2057 (2002).

    Article  CAS  Google Scholar 

  20. Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Sletten, E. M. & Bertozzi, C. R. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44, 666–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Sitti, M. Physical intelligence as a new paradigm. Extreme Mech. Lett. 46, 101340 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Levin, L. A. & Danesh-Meyer, H. V. Lost in translation: bumps in the road between bench and bedside. J. Am. Med. Assoc. 303, 1533–1534 (2010).

    Article  CAS  Google Scholar 

  27. Hanscom, M. & Cave, D. R. Endoscopic capsule robot-based diagnosis, navigation and localization in the gastrointestinal tract. Front. Robot. AI 9, 896028 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, L., Jiang, K. & Shen, G. Wearable, implantable, and interventional medical devices based on smart electronic skins. Adv. Mater. Technol. 6, 2100107 (2021).

    Article  Google Scholar 

  29. Lam, R. H. W. & Chen, W. Biomedical Devices: Materials, Design, and Manufacturing (Springer, 2019).

  30. Stavrinidou, E. & Proctor, C. M. Introduction to Bioelectronics: Materials, Devices, and Applications (AIP Publishing, 2022).

  31. Wallin, R. F. & Arscott, E. F. A practical guide to ISO-10993-5: cytotoxicity. Med. Device Diagnostic Ind. 20, 96–98 (1998).

    Google Scholar 

  32. Strickland, J. et al. Status of acute systemic toxicity testing requirements and data uses by US regulatory agencies. Regul. Toxicol. Pharmacol. 94, 183–196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mohammadpour, R., Dobrovolskaia, M. A., Cheney, D. L., Greish, K. F. & Ghandehari, H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv. Drug. Deliv. Rev. 144, 112–132 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kabanov, A. V. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv. Drug. Delivery Rev. 58, 1597–1621 (2006).

    Article  CAS  Google Scholar 

  35. Bond, J. A. Review of the toxicology of styrene. Crit. Rev. Toxicol. 19, 227–249 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Q. & Thouas, G. A. Metallic implant biomaterials. Mater. Sci. Eng. R 87, 1–57 (2015).

    Article  Google Scholar 

  37. Heise, T. et al. Report on investigation of ISO 10993-12 extraction conditions. Regul. Toxicol. Pharmacol. 131, 105164 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Majidi, C. Soft-matter engineering for soft robotics. Adv. Mater. Technol. 4, 1800477 (2019).

    Article  Google Scholar 

  39. Mazzolai, B. et al. Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunct. Mater. 5, 032001 (2022).

    Article  ADS  CAS  Google Scholar 

  40. Coyle, S., Majidi, C., LeDuc, P. & Hsia, K. J. Bio-inspired soft robotics: material selection, actuation, and design. Extreme Mech. Lett. 22, 51–59 (2018).

    Article  Google Scholar 

  41. Zhang, M. et al. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. Nat. Mater. 22, 1243–1252 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hartmann, F., Baumgartner, M. & Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 33, e2004413 (2021).

    Article  PubMed  Google Scholar 

  43. Cabanach, P. et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater. 32, e2003013 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. VanEpps, J. S. & Younger, J. G. Implantable device-related infection. Shock 46, 597–608 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tipnis, N. P. & Burgess, D. J. Sterilization of implantable polymer-based medical devices: a review. Int. J. Pharm. 544, 455–460 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, D. et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mater. 31, 2007226 (2021).

    Article  CAS  Google Scholar 

  47. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kizhakkedathu, J. N. & Conway, E. M. Biomaterial and cellular implants: foreign surfaces where immunity and coagulation meet. Blood 139, 1987–1998 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Serda, R. E. et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials 30, 2440–2448 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Franz, S., Rammelt, S., Scharnweber, D. & Simon, J. C. Immune responses to implants — a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Harris, J. M., Martin, N. E. & Modi, M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Williams, D. F. There is no such thing as a biocompatible material. Biomaterials 35, 10009–10014 (2014). This review takes a detailed look at biocompatibility tests for biomedical materials.

    Article  CAS  PubMed  Google Scholar 

  54. Cangelosi, A., Bongard, J., Fischer, M. H. & Nolfi, S. Embodied intelligence. In Springer Handbook of Computational Intelligence (eds Kacprzyk, J. & Pedrycz, W.) 697–714 (2015).

  55. Zhang, J. et al. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 6, eabf0112 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Utke, I. et al. Coordination and organometallic precursors of group 10 and 11: focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord. Chem. Rev. 458, 213851 (2022).

    Article  CAS  Google Scholar 

  57. Barth, S., Huth, M. & Jungwirth, F. Precursors for direct-write nanofabrication with electrons. J. Mater. Chem. C 8, 15884–15919 (2020).

    Article  CAS  Google Scholar 

  58. Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Kwok, S. W. et al. Magnetic assembly of soft robots with hard components. Adv. Funct. Mater. 24, 2180–2187 (2014).

    Article  CAS  Google Scholar 

  60. Jonkheijm, P., van der Schoot, P., Schenning, A. P. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wendorff, J. H., Agarwal, S. & Greiner, A. Electrospinning: Materials, Processing, and Applications (John Wiley & Sons, 2012).

  63. Hines, L., Petersen, K., Lum, G. Z. & Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 29, 1603483 (2017).

  64. Sitti, M. Mobile Microrobotics (MIT Press, 2017).

  65. Apsite, I., Salehi, S. & Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 122, 1349–1415 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, Y., Dong, X., Kim, J. K., Wang, C. & Sitti, M. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8, eabn3431 (2022). This article demonstrates modelling, fabrication and control challenges for soft robotic devices on various surfaces of the gastrointestinal tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Magdanz, V., Stoychev, G., Ionov, L., Sanchez, S. & Schmidt, O. G. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem. Int. Edn Engl. 53, 2673–2677 (2014).

    Article  CAS  Google Scholar 

  68. Kagan, D. et al. Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11, 2083–2087 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Garcia-Gradilla, V. et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 10, 4154–4159 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Esteban-Fernandez de Avila, B. et al. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9, 6756–6764 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Kwon, G. H. et al. Biomimetic soft multifunctional miniature aquabots. Small 4, 2148–2153 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Scalet, G. Two-way and multiple-way shape memory polymers for soft robotics: an overview. Actuators 9, 10 (2020).

  73. Akolpoglu, M. B. et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci. Adv. 8, eabo6163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2, e1600418 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Sitti, M. et al. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE Inst. Electr. Electron. Eng. 103, 205–224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, B., Zhang, Y. & Zhang, L. Recent progress on micro- and nano-robots: towards in vivo tracking and localization. Quant. Imaging Med. Surg. 8, 461–479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Son, D., Yim, S. & Sitti, M. A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of Hall-effect sensors. IEEE/ASME Trans. Mechatron. 21, 708–716 (2015).

    Article  Google Scholar 

  80. Berkelman, P. & Abdul-Ghani, H. Electromagnetic haptic feedback system for use with a graphical display using flat coils and sensor array. IEEE Robot. Autom. Lett. 5, 1618–1625 (2020).

    Article  Google Scholar 

  81. Wright, S. E., Mahoney, A. W., Popek, K. M. & Abbott, J. J. A spherical-magnet end-effector for robotic magnetic manipulation. In 2015 IEEE International Conference on Robotics and Automation (ICRA) 1190–1195 (IEEE, 2020).

  82. Li, J., Esteban-Fernandez de Avila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stanton, M. M. et al. Biohybrid microtube swimmers driven by single captured bacteria. Small 13, 1603679 (2017).

    Article  Google Scholar 

  84. Miller, K. M., Mahoney, A. W., Schmid, T. & Abbott, J. J. Proprioceptive magnetic-field sensing for closed-loop control of magnetic capsule endoscopes. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 1994–1999 (IEEE, 2012).

  85. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Wang, X. et al. Untethered and ultrafast soft-bodied robots. Commun. Mater. 1, 67 (2020).

    Article  Google Scholar 

  87. Song, S. et al. 6-D magnetic localization and orientation method for an annular magnet based on a closed-form analytical model. IEEE Trans. Magnetics 50, 5000411 (2014).

    Article  Google Scholar 

  88. Lum, G. Z. et al. Shape-programmable magnetic soft matter. Proc. Natl Acad. Sci. USA 113, E6007–E6015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tiryaki, M. E., Demir, S. O. & Sitti, M. Deep learning-based 3D magnetic microrobot tracking using 2D MR images. IEEE Robot. Autom. Lett. 7, 6982–6989 (2022).

    Article  Google Scholar 

  90. Abdallah, M. N. et al. Biomaterial surface proteomic signature determines interaction with epithelial cells. Acta Biomater. 54, 150–163 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Aghakhani, A. et al. High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8, eabm5126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nan, K. et al. Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  93. Mandsberg, N. K., Christfort, J. F., Kamguyan, K., Boisen, A. & Srivastava, S. K. Orally ingestible medical devices for gut engineering. Adv. Drug. Deliv. Rev. 165–166, 142–154 (2020).

    Article  PubMed  Google Scholar 

  94. Dong, X. et al. Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination. Sci. Adv. 6, eabc9323 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bourquin, J. et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 30, e1704307 (2018).

    Article  PubMed  Google Scholar 

  96. Zhang, X. D. et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33, 4628–4638 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Farah, S. et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nat. Mater. 18, 892–904 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cuttaz, E. et al. Conductive elastomer composites for fully polymeric, flexible bioelectronics. Biomater. Sci. 7, 1372–1385 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Xing, C. M. et al. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater. 59, 129–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Li, S. D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Mehta, D., Ravindran, K. & Kuebler, W. M. Novel regulators of endothelial barrier function. Am. J. Physiol. Lung Cell Mol. Physiol. 307, L924–L935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rehmann, M. S. et al. Tuning and predicting mesh size and protein release from step growth hydrogels. Biomacromolecules 18, 3131–3142 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thai, M. T. et al. Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery. Adv. Sci. 10, e2205656 (2023).

    Article  Google Scholar 

  104. Loebel, C., Rodell, C. B., Chen, M. H. & Burdick, J. A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat. Protoc. 12, 1521–1541 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl Acad. Sci. USA 108, 17876–17882 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhou, C. et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xiong, J., Chen, J. & Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33, e2002640 (2021).

    Article  PubMed  Google Scholar 

  110. Ren, Z. et al. Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Sci. Adv. 7, eabh2022 (2021). This article reports a crawling soft robot inside the body’s fluid-filled confined spaces.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vagni, P. et al. POLYRETINA restores light responses in vivo in blind Göttingen minipigs. Nat. Commun. 13, 3678 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, J. C. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 6, 706–716 (2022). This article reports an in vivo study showing a preclinical example of wireless millimetric robotic devices.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nagarajan, N., Dupret-Bories, A., Karabulut, E., Zorlutuna, P. & Vrana, N. E. Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnol. Adv. 36, 521–533 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9, eaaf3925 (2017).

    Article  PubMed  Google Scholar 

  117. Son, D., Gilbert, H. & Sitti, M. Magnetically actuated soft capsule endoscope for fine-needle biopsy. Soft Robot. 7, 10–21 (2020).

    Article  PubMed  Google Scholar 

  118. Zheng, Z. et al. Electrodeposited superhydrophilic-superhydrophobic composites for untethered multi-stimuli-responsive soft millirobots. Adv. Sci. 10, e2302409 (2023).

    Article  Google Scholar 

  119. Ren, Z., Hu, W., Dong, X. & Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10, 2703 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  120. Kashyap, V. et al. Multilayer fabrication of durable catheter-deployable soft robotic sensor arrays for efficient left atrial mapping. Sci. Adv. 6, eabc6800 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Go, G. et al. Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano 15, 1059–1076 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Sitti, M. Miniature soft robots—road to the clinic. Nat. Rev. Mater. 3, 74–75 (2018).

    Article  ADS  Google Scholar 

  123. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021). This article demonstrates biodegradable soft sensors with wireless communication modality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Boveiri, H. R., Khayami, R., Javidan, R. & Mehdizadeh, A. Medical image registration using deep neural networks: a comprehensive review. Comput. Electr. Eng. 87, 106767 (2020).

    Article  Google Scholar 

  125. Lin, K., Li, Y., Sun, J., Zhou, D. & Zhang, Q. Multi-sensor fusion for body sensor network in medical human–robot interaction scenario. Inf. Fusion 57, 15–26 (2020).

    Article  Google Scholar 

  126. Tiryaki, M. E., Elmacıoğlu, Y. G. & Sitti, M. Magnetic guidewire steering at ultrahigh magnetic fields. Sci. Adv. 9, eadg6438 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cao, A., Dhanaliwala, A., Shi, J., Gade, T. P. & Park, B. J. Image-based marker tracking and registration for intraoperative 3D image-guided interventions using augmented reality. In Proc. SPIE Medical Imaging 2020 11318 (SPIE, 2020).

  128. Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019). This article describes an example of in vivo testing of soft biocompatible materials with medical functions.

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Tang, Y. et al. Wireless miniature magnetic phase-change soft actuators. Adv. Mater. 34, e2204185 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mc Caffrey, C. et al. Continuum robotic caterpillar with wirelessly powered shape memory alloy actuators. Soft Robot. 7, 700–710 (2020).

    Article  Google Scholar 

  131. Ebrahimi, N. et al. Magnetic actuation methods in bio/soft robotics. Adv. Funct. Mater. 31, 2005137 (2021).

    Article  CAS  Google Scholar 

  132. Herbert, R., Lim, H. R., Rigo, B. & Yeo, W. H. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article  CAS  Google Scholar 

  134. Lei, I. M. et al. 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nat. Commun. 12, 6260 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, C. et al. Wirelessly powered deformable electronic stent for noninvasive electrical stimulation of lower esophageal sphincter. Sci. Adv. 9, eade8622 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Iacovacci, V. et al. A fully implantable device for intraperitoneal drug delivery refilled by ingestible capsules. Sci. Robot. 6, eabh3328 (2021).

    Article  PubMed  Google Scholar 

  137. Jiang, L. et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat. Commun. 13, 3853 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. De la Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  139. Sharma, S. et al. Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics. Nat. Electron. 6, 242–256 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ramadi, K. B. et al. Bioinspired, ingestible electroceutical capsules for hunger-regulating hormone modulation. Sci. Robot. 8, eade9676 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yan, Y. et al. Magnetically assisted soft milli-tools for occluded lumen morphology detection. Sci. Adv. 9, eadi3979 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Q., Du, X., Jin, D. & Zhang, L. Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604–616 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, Z. et al. Treatment of ruptured and nonruptured aneurysms using a semisolid iodinated embolic agent. Adv. Mater. 34, e2108266 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Avery, R. K. et al. An injectable shear-thinning biomaterial for endovascular embolization. Sci. Transl. Med. 8, 365ra156 (2016).

    Article  PubMed  Google Scholar 

  146. Wang, T., Hu, W., Ren, Z. & Sitti, M. Ultrasound-guided wireless tubular robotic anchoring system. IEEE Robot. Autom. Lett. 5, 4859–4866 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Maier-Hauff, K. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011).

    Article  PubMed  Google Scholar 

  148. Wang, W. et al. Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605, 681–686 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  149. Reynolds, M. F. et al. Microscopic robots with onboard digital control. Sci. Robot. 7, eabq2296 (2022). This article describes onboard computation capabilities in wireless devices.

    Article  PubMed  Google Scholar 

  150. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2023).

    Article  PubMed  Google Scholar 

  151. Feng, W. et al. Cholesteric liquid crystal polymeric coatings for colorful artificial muscles and motile humidity sensor skin integrated with magnetic composites. Adv. Funct. Mater. 33, 2300731 (2023).

    Article  CAS  Google Scholar 

  152. Chen, S. et al. Biodegradable microrobots for DNA vaccine delivery. Adv. Healthc. Mater. 12, e2202921 (2023).

    Article  PubMed  Google Scholar 

  153. Diana, M. & Marescaux, J. Robotic surgery. Br. J. Surg. 102, e15–e28 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Moglia, A. et al. A systematic review of virtual reality simulators for robot-assisted surgery. Eur. Urol. 69, 1065–1080 (2016).

    Article  PubMed  Google Scholar 

  155. Erol, T., Mendi, A. F. & Doğan, D. The digital twin revolution in healthcare. In 4th Int. Symp. on Multidisciplinary Studies and Innovative Technologies (ISMSIT) https://doi.org/10.1109/ISMSIT50672.2020.9255249 (2020).

  156. Croatti, A., Gabellini, M., Montagna, S. & Ricci, A. On the integration of agents and digital twins in healthcare. J. Med. Syst. 44, 161 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Felgner, S., Kocijancic, D., Frahm, M. & Weiss, S. Bacteria in cancer therapy: renaissance of an old concept. Int. J. Microbiol. 2016, 8451728 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Raman, R. & Langer, R. Biohybrid design gets personal: new materials for patient-specific therapy. Adv. Mater. 32, e1901969 (2020).

    Article  PubMed  Google Scholar 

  159. Lerner, M. B. et al. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano 6, 5143–5149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Almeida, M. & Ranisch, R. Beyond safety: mapping the ethical debate on heritable genome editing interventions. Human. Soc. Sci. Commun. 9, 139 (2022).

    Article  Google Scholar 

  161. Wrede, P., Aghakhani, A., Bozuyuk, U., Yildiz, E. & Sitti, M. Acoustic trapping and manipulation of hollow microparticles under fluid flow using a single-lens focused ultrasound transducer. ACS Appl. Mater. Interf. 15, 52224–52236 (2023).

    CAS  Google Scholar 

  162. Bozuyuk, U., Yildiz, E., Han, M., Demir, S. O. & Sitti, M. Size-dependent locomotion ability of surface microrollers on physiologically relevant microtopographical surfaces. Small 19, e2303396 (2023).

    Article  PubMed  Google Scholar 

  163. Sassoon, I. & Blanc, V. Antibody–drug conjugate (ADC) clinical pipeline: a review. Meth. Mol. Biol. 1045, 1–27 (2013).

    Article  Google Scholar 

  164. Marei, H. E., Cenciarelli, C. & Hasan, A. Potential of antibody–drug conjugates (ADCs) for cancer therapy. Cancer Cell Int. 22, 255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Héder, M. From NASA to EU: the evolution of the TRL scale in public sector innovation. Innov. J. 22, 1–23 (2017).

    Google Scholar 

  166. Seva, R. R., Tan, A. L. S., Tejero, L. M. S. & Salvacion, M. L. D. S. Multi-dimensional readiness assessment of medical devices. Theor. Issues Ergon. Sci. 24, 189–205 (2023).

    Article  Google Scholar 

  167. Lavin, A. et al. Technology readiness levels for machine learning systems. Nat. Commun. 13, 6039 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Schroeder, R. G., Linderman, K., Liedtke, C. & Choo, A. S. Six sigma: definition and underlying theory. J. Oper. Manag. 26, 536–554 (2007).

    Article  Google Scholar 

  169. Rowe, P. G. Design Thinking (MIT Press, 1991).

  170. Abras, C., Maloney-Krichmar, D. & Preece, J. User-centered design. In Encyclopedia of Human–Computer Interaction (ed. Bainbridge, W.) Vol. 37, 445–456 (Sage Publications, 2004).

  171. Hede, S., Nunes, M. J. L., Ferreira, P. F. V. & Rocha, L. A. Incorporating sustainability in decision-making for medical device development. Technol. Soc. 35, 276–293 (2013).

    Article  Google Scholar 

  172. Editorial. Traversing the valley of death. Nat. Rev. Bioeng. 1, 875 (2023).

  173. Pya, Y. et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J. Heart Lung Transpl. 38, 339–343 (2019).

    Article  Google Scholar 

  174. Tashi, T., Mbuya, V. B. & Gangadharappa, H. V. Corrective action and preventive actions and its importance in quality management system: a review. Int. J. Pharm. Qual. Assur. 7, 1–6 (2016).

    Google Scholar 

  175. Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Ho, A. & Quick, O. Leaving patients to their own devices? Smart technology, safety and therapeutic relationships. BMC Med. Ethics 19, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Council for International Organizations of Medical Sciences. International ethical guidelines for biomedical research involving human subjects. Bull. Med. Ethics 182, 17–23 (2002).

  178. Kichloo, A. et al. Telemedicine, the current COVID-19 pandemic and the future: a narrative review and perspectives moving forward in the USA. Fam. Med. Community Health 8, e000530 (2020).

    Article  PubMed  Google Scholar 

  179. Emanuel, E. J. & Emanuel, L. L. Four models of the physician–patient relationship. J. Am. Med. Assoc. 267, 2221–2226 (1992).

    Article  CAS  Google Scholar 

  180. Kadakia, K. T., Dhruva, S. S., Caraballo, C., Ross, J. S. & Krumholz, H. M. Use of recalled devices in new device authorizations under the us food and drug administration’s 510(k) pathway and risk of subsequent recalls. J. Am. Med. Assoc. 329, 136–143 (2023).

    Article  Google Scholar 

  181. Abuhav, I. ISO 13485: 2016: A Complete Guide to Quality Management in the Medical Device Industry (CRC Press, 2018).

  182. Wu, Z., Lin, X., Zou, X., Sun, J. & He, Q. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl. Mater. Interf. 7, 250–255 (2015).

    Article  CAS  Google Scholar 

  183. Lee, Y. W. et al. Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery. Adv. Mater. 35, e2209812 (2023).

    Article  PubMed  Google Scholar 

  184. Aydin, O. et al. Neuromuscular actuation of biohybrid motile bots. Proc. Natl Acad. Sci. USA 116, 19841–19847 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ze, Q. et al. Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 13, 3118 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  187. Jin, P. et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7, eabg2507 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dyro, J. (ed.). Clinical Engineering Handbook (Elsevier, 2004).

  189. Tau, N. & Shepshelovich, D. Assessment of data sources that support US Food and Drug Administration medical devices safety communications. JAMA Intern. Med. 180, 1420–1426 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Everhart, A. O., Sen, S., Stern, A. D., Zhu, Y. & Karaca-Mandic, P. Association between regulatory submission characteristics and recalls of medical devices receiving 510 (k) clearance. J. Am. Med. Assoc. 329, 144–156 (2023).

    Article  Google Scholar 

  191. Kramer, D. B. et al. Security and privacy qualities of medical devices: an analysis of FDA postmarket surveillance. PLoS One 7, e40200 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hofer, M. P. et al. Regulatory watch: impact of scientific advice from the European Medicines Agency. Nat. Rev. Drug. Discov. 14, 302–303 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Flynn, R. et al. Marketing authorization applications made to the European Medicines Agency in 2018–2019: what was the contribution of real-world evidence? Clin. Pharmacol. Therapeut. 111, 90–97 (2022).

    Article  Google Scholar 

  194. Cheng, M. Medical Device Regulations: Global Overview and Guiding Principles (World Health Organization, 2003).

  195. Lamph, S. Regulation of medical devices outside the European Union. J. R. Soc. Med. 105, S12–S21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Folefac, C. A. & Desmond, H. Clinical equipoise: why still the gold standard for randomized clinical trials? Clin. Ethics 17, 14777509221121107 (2022).

    Google Scholar 

  197. Zuckerman, D. M., Brown, P. & Nissen, S. E. Medical device recalls and the FDA approval process. Arch. Intern. Med. 171, 1006–1011 (2011).

    Article  PubMed  Google Scholar 

  198. Muth, C. C. Conflict of interest in medicine. J. Am. Med. Assoc. 317, 1812 (2017).

    Article  Google Scholar 

  199. Baim, D. S. et al. Medical device development: managing conflicts of interest encountered by physicians. Catheter. Cardiovasc. Interv. 69, 655–664 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by the Max Planck Society and the European Research Council (ERC) Advanced Grant (SoMMoR project, grant number 834531). Y.W. thanks the Alexander von Humboldt Foundation for financial support. E.Y. has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement number 101059593.

Author information

Authors and Affiliations

Authors

Contributions

T.W., Y.W. and E.Y. contributed equally to this work. M.S. initiated the Review, and all the authors developed its outline. All authors contributed to the writing and editing of the Review.

Corresponding author

Correspondence to Metin Sitti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Huichan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wu, Y., Yildiz, E. et al. Clinical translation of wireless soft robotic medical devices. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00156-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00156-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research