Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanoneural interfaces for bionic integration

Abstract

Our expanding expertise in peripheral nerve regeneration and soft tissue reconstruction is enabling the development of novel innervated tissue constructs that can be combined with artificial interfacing technologies to facilitate control and sensation of limb prostheses. By utilizing the body’s native afferent and efferent signalling pathways, these mechanoneural interfaces have demonstrated the capacity to enhance volitional prosthetic control, refer somatosensory sensation within proprioceptive and cutaneous modalities, and reduce post-amputation pain. This Review discusses the biophysical principles underpinning recent advancements in targeted reinnervation techniques, regenerative peripheral nerve interfaces and agonist–antagonist neuromuscular architectures that can be combined with artificial technologies, including implanted electrodes, magnetic interfacing and osseointegrated structures, for improved integration with upper-extremity and lower-extremity prostheses. Expanding the capacity for bidirectional information transfer between the peripheral nervous system and external assistive devices will increase the potential of prosthetic embodiment and rehabilitation.

Key points

  • A mechanoneural interface combines surgically modified soft tissue constructs, such as nerves and muscles, with artificial components to enhance peripheral neural signalling for the reconstruction of bionic limbs

  • A more thorough understanding of end organ cross-innervation and regeneration dynamics may inform mechanoneural interface design

  • Mechanoneural interfaces afford improved physiological efferent and afferent neural signalling that could sustain prosthetic embodiment

  • Mechanoneural interface soft tissue constructs show reduced post-amputation pain and neuroma formation in clinical settings

  • Next-generation mechanoneural interfaces suggest additional utility with respect to efferent prosthetic control and prosthetic somatosensation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional amputation and clinical mechanoneural interfaces.
Fig. 2: Principles of mechanoneural transduction and soft tissue reconstruction.
Fig. 3: Soft tissue architectures of preclinical mechanoneural interfaces.
Fig. 4: Mechanoneural interfaces in a closed-loop prosthetic architecture.

Similar content being viewed by others

References

  1. Moghadasi, A. N. Artificial eye in burnt city and theoretical understanding of how vision works. Iran J. Public Health 43, 1595–1596 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Finch, J. L., Heath, G. H., David, A. R. & Kulkarni, J. Biomechanical assessment of two artificial big toe restorations from ancient Egypt and their significance to the history of prosthetics. J. Prosthet. Orthot. 24, 181–191 (2012).

    Article  Google Scholar 

  3. Bhuyan, D. & Kumar, K. in Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement (ed. Khosrow-Pour, M.) 365–380 (IGI Global, 2021).

  4. Weir, R. F., Heckathorne, C. W. & Childress, D. S. Cineplasty as a control input for externally powered prosthetic components. J. Rehabil. Res. Dev. 38, 357–363 (2001).

    CAS  PubMed  Google Scholar 

  5. Kuiken, T. A. et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 619–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kung, T. A. et al. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode. Plast. Reconstr. Surg. 133, 1380–1394 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Clites, T. R. et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10, eaap8373 (2018).

    Article  PubMed  Google Scholar 

  8. Herr, H. M. et al. Reinventing extremity amputation in the era of functional limb restoration. Ann. Surg. 273, 269–279 (2021).

    Article  PubMed  Google Scholar 

  9. Ehrsson, H. H. in Multisensory Perception (eds Sathian, K. & Ramachandran, V. S.) Ch. 8 (Academic Press, 2020).

  10. Schofield, J. S. et al. Embodied cooperation to promote forgiving interactions with autonomous machines. Front. Neurorobot. 15, 661603 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zbinden, J., Lendaro, E. & Ortiz-Catalan, M. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms. J. Neuroeng. Rehabil. 19, 37 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Segil, J. L., Roldan, L. M. & Graczyk, E. L. Measuring embodiment: a review of methods for prosthetic devices. Front. Neurorobot. 16, 902162 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Azocar, A. F. et al. Design and clinical implementation of an open-source bionic leg. Nat. Biomed. Eng. 4, 941–953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carney, M. E., Shu, T., Stolyarov, R., Duval, J.-F. & Herr, H. M. Design and preliminary results of a reaction force series elastic actuator for bionic knee and ankle prostheses. IEEE Trans. Med. Robot. Bionics 3, 542–553 (2021).

    Article  Google Scholar 

  15. Tropea, P., Mazzoni, A., Micera, S. & Corbo, M. Giuliano Vanghetti and the innovation of “cineplastic operations”. Neurology 89, 1627–1632 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mazet, R. Cineplasty; historical review, present status, and critical evaluation of sixty-four patients. J. Bone Jt. Surg. Am. 40-A, 1389–1400 (1958).

    Article  Google Scholar 

  17. Brav, E. A., Macdonald, W. F., Woodard, G. H. & Léonard, F. Follow-up notes on articles previously published in the journal. cineplasty — ten years later. J. Bone Jt. Surg. Am. 46, 1137–1138 (1964).

    Article  CAS  Google Scholar 

  18. Kuiken, T. A., Dumanian, G. A., Lipschutz, R. D., Miller, L. A. & Stubblefield, K. A. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Vu, P. P. et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci. Transl. Med. 12, eaay2857 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Viton, J. M. et al. Equilibrium and movement control strategies in transtibial amputees. Prosthet. Orthot. Int. 24, 108–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Olenšek, A., Zadravec, M., Burger, H. & Matjačić, Z. Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side. J. Neuroeng. Rehabil. 18, 123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Flor, H. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375, 482–484 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Makin, T. R. et al. Phantom pain is associated with preserved structure and function in the former hand area. Nat. Commun. 4, 1570 (2013).

    Article  ADS  PubMed  Google Scholar 

  24. Ortiz-Catalan, M. The stochastic entanglement and phantom motor execution hypotheses: a theoretical framework for the origin and treatment of phantom limb pain. Front. Neurol. 9, 748 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wentink, E. C., Prinsen, E. C., Rietman, J. S. & Veltink, P. H. Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. J. Neuroeng. Rehabil. 10, 87 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andrysek, J. Lower-limb prosthetic technologies in the developing world: a review of literature from 1994–2010. Prosthet. Orthot. Int. 34, 378–398 (2010).

    Article  PubMed  Google Scholar 

  27. Zuo, K. J. & Olson, J. L. The evolution of functional hand replacement: from iron prostheses to hand transplantation. Plast. Surg. 22, 44–51 (2014).

    Article  Google Scholar 

  28. Biddiss, E. & Chau, T. Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86, 977–987 (2007).

    Article  PubMed  Google Scholar 

  29. Luza, L. P., Ferreira, E. G., Minsky, R. C., Pires, G. K. W. & da Silva, R. Psychosocial and physical adjustments and prosthesis satisfaction in amputees: a systematic review of observational studies. Disabil. Rehabil. Assist. Technol. 15, 582–589 (2020).

    Article  PubMed  Google Scholar 

  30. Safari, R. Lower limb prosthetic interfaces: clinical and technological advancement and potential future direction. Prosthet. Orthot. Int. 44, 384–401 (2020).

    Article  PubMed  Google Scholar 

  31. Murray, C. D. An interpretative phenomenological analysis of the embodiment of artificial limbs. Disabil. Rehabil. 26, 963–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Schaffalitzky, E., Gallagher, P., MacLachlan, M. & Wegener, S. T. Developing consensus on important factors associated with lower limb prosthetic prescription and use. Disabil. Rehabil. 34, 2085–2094 (2012).

    Article  PubMed  Google Scholar 

  33. Biddiss, E., Beaton, D. & Chau, T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2, 346–357 (2007).

    Article  PubMed  Google Scholar 

  34. Cordella, F. et al. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 10, 209 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schaffalitzky, E., Gallagher, P., Maclachlan, M. & Ryall, N. Understanding the benefits of prosthetic prescription: exploring the experiences of practitioners and lower limb prosthetic users. Disabil. Rehabil. 33, 1314–1323 (2011).

    Article  PubMed  Google Scholar 

  36. Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100, 37–45.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Marasco, P. D. et al. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. Sci. Robot. 6, eabf3368 (2021).

    Article  PubMed  Google Scholar 

  38. Bernshteĭn, N. A. The Co-ordination and Regulation of Movements (Pergamon Press, 1967).

  39. Latash, M. L., Levin, M. F., Scholz, J. P. & Schöner, G. Motor control theories and their applications. Medicina 46, 382–392 (2010).

    Article  PubMed  Google Scholar 

  40. Haans, A., IJsselsteijn, W. A. & de Kort, Y. A. W. The effect of similarities in skin texture and hand shape on perceived ownership of a fake limb. Body Image 5, 389–394 (2008).

    Article  PubMed  Google Scholar 

  41. Rosén, B. et al. Referral of sensation to an advanced humanoid robotic hand prosthesis. Scand. J. Plast. Reconstr. Surg. Hand Surg. 43, 260–266 (2009).

    Article  PubMed  Google Scholar 

  42. Farmer, H., Tajadura-Jiménez, A. & Tsakiris, M. Beyond the colour of my skin: how skin colour affects the sense of body-ownership. Conscious. Cogn. 21, 1242–1256 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zbinden, J., Lendaro, E. & Ortiz-Catalan, M. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research. J. Neuroeng. Rehabil. 19, 122 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Makin, T. R., Holmes, N. P. & Ehrsson, H. H. On the other hand: dummy hands and peripersonal space. Behav. Brain Res. 191, 1–10 (2008).

    Article  PubMed  Google Scholar 

  45. Kalckert, A. & Ehrsson, H. H. Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6, 40 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Farrer, C., Valentin, G. & Hupé, J. M. The time windows of the sense of agency. Conscious. Cogn. 22, 1431–1441 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Krugwasser, A. R., Harel, E. V. & Salomon, R. The boundaries of the self: the sense of agency across different sensorimotor aspects. J. Vis. 19, 14 (2019).

    Article  PubMed  Google Scholar 

  48. Antusch, S., Custers, R., Marien, H. & Aarts, H. Studying the sense of agency in the absence of motor movement: an investigation into temporal binding of tactile sensations and auditory effects. Exp. Brain Res. 239, 1795–1806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karsh, N., Eitam, B., Mark, I. & Higgins, E. T. Bootstrapping agency: how control-relevant information affects motivation. J. Exp. Psychol. Gen. 145, 1333–1350 (2016).

    Article  PubMed  Google Scholar 

  50. Gallagher, S. & Cole, J. Body image and body schema in a deafferented subject. J. Mind Behav. 16, 369–389 (1995).

    Google Scholar 

  51. Longo, M. R. in Perceptual and Emotional Embodiment (eds Coello, Y. & Fischer, M. H.) Ch. 6 (Routledge, 2015).

  52. Cardinali, L. et al. Tool-use induces morphological updating of the body schema. Curr. Biol. 19, R478–R479 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. De Preester, H. & Tsakiris, M. Body-extension versus body-incorporation: is there a need for a body-model? Phenomenol. Cogn. Sci. 8, 307–319 (2009).

    Article  Google Scholar 

  54. Molina, C. S. & Faulk, J. Lower extremity amputation. In StatPearls (StatPearls Publishing, 2022).

  55. Maduri, P. & Akhondi, H. Upper Limb Amputation. In StatPearls (StatPearls Publishing, 2023).

  56. Tropf, J. G. & Potter, B. K. Osseointegration for amputees: current state of direct skeletal attachment of prostheses. Orthoplastic Surg. 12, 20–28 (2023).

    Article  Google Scholar 

  57. Navarro, X. et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005).

    Article  PubMed  Google Scholar 

  58. Horch, K., Meek, S., Taylor, T. G. & Hutchinson, D. T. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 483–489 (2011).

    Article  PubMed  Google Scholar 

  59. Davis, T. S. et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng. 13, 036001 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. D’Anna, E. et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4, eaau8892 (2019).

    Article  PubMed  Google Scholar 

  61. Dubin, A. E. & Patapoutian, A. Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120, 3760–3772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Taylor, C. R. et al. Magnetomicrometry. Sci. Robot. 6, eabg0656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. McGlone, F. & Spence, C. The cutaneous senses: touch, temperature, pain/itch, and pleasure. Neurosci. Biobehav. Rev. 34, 145–147 (2010).

    Article  PubMed  Google Scholar 

  64. Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Augurelle, A.-S., Smith, A. M., Lejeune, T. & Thonnard, J.-L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J. Neurophysiol. 89, 665–671 (2003).

    Article  PubMed  Google Scholar 

  66. Witney, A. G., Wing, A., Thonnard, J.-L. & Smith, A. M. The cutaneous contribution to adaptive precision grip. Trends Neurosci. 27, 637–643 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Libouton, X., Barbier, O., Berger, Y., Plaghki, L. & Thonnard, J.-L. Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand. Behav. Brain Res. 229, 273–279 (2012).

    Article  PubMed  Google Scholar 

  68. Weiler, J., Gribble, P. L. & Pruszynski, J. A. Spinal stretch reflexes support efficient control of reaching. J. Neurophysiol. 125, 1339–1347 (2021).

    Article  PubMed  Google Scholar 

  69. Johnson, K. O., Yoshioka, T. & Vega–Bermudez, F. Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17, 539–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Yau, J. M., Kim, S. S., Thakur, P. H. & Bensmaia, S. J. Feeling form: the neural basis of haptic shape perception. J. Neurophysiol. 115, 631–642 (2016).

    Article  PubMed  Google Scholar 

  71. Ebied, A. M., Kemp, G. J. & Frostick, S. P. The role of cutaneous sensation in the motor function of the hand. J. Orthop. Res. 22, 862–866 (2004).

    Article  PubMed  Google Scholar 

  72. Voisin, J., Lamarre, Y. & Chapman, C. E. Haptic discrimination of object shape in humans: contribution of cutaneous and proprioceptive inputs. Exp. Brain Res. 145, 251–260 (2002).

    Article  PubMed  Google Scholar 

  73. Giachritsis, C., Bevins, R. & Wing, A. The contribution of proprioceptive and cutaneous cues in weight perception: early evidence for maximum-likelihood integration. in Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science vol. 6191 (eds Kappers, A. M. L., van Erp, J. B. F., Bergmann Tiest, W. M. & van der Helm, F. C. T.) 11–16 (Springer, 2010).

  74. Meyer, P. F., Oddsson, L. I. E. & De Luca, C. J. The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 156, 505–512 (2004).

    Article  PubMed  Google Scholar 

  75. Eils, E. et al. Reduced plantar sensation causes a cautious walking pattern. Gait Posture 20, 54–60 (2004).

    Article  PubMed  Google Scholar 

  76. Höhne, A., Ali, S., Stark, C. & Brüggemann, G.-P. Reduced plantar cutaneous sensation modifies gait dynamics, lower-limb kinematics and muscle activity during walking. Eur. J. Appl. Physiol. 112, 3829–3838 (2012).

    Article  PubMed  Google Scholar 

  77. Viseux, F. et al. How can the stimulation of plantar cutaneous receptors improve postural control? Review and clinical commentary. Neurophysiol. Clin. 49, 263–268 (2019).

    Article  PubMed  Google Scholar 

  78. Dietz, V. Proprioception and locomotor disorders. Nat. Rev. Neurosci. 3, 781–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Zehr, E. P. & Stein, R. B. What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58, 185–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Navarro, X., Verdú, E. & Butí, M. Comparison of regenerative and reinnervating capabilities of different functional types of nerve fibers. Exp. Neurol. 129, 217–224 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Gordon, T. Peripheral nerve regeneration and muscle reinnervation. Int. J. Mol. Sci. 21, 8652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brushart, T. M. Preferential motor reinnervation: a sequential double-labeling study. Restor. Neurol. Neurosci. 1, 281–287 (1990).

    CAS  PubMed  Google Scholar 

  83. Brushart, T. M. Motor axons preferentially reinnervate motor pathways. J. Neurosci. 13, 2730–2738 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brushart, T. M., Gerber, J., Kessens, P., Chen, Y.-G. & Royall, R. M. Contributions of pathway and neuron to preferential motor reinnervation. J. Neurosci. 18, 8674–8681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bolívar, S. & Udina, E. Preferential regeneration and collateral dynamics of motor and sensory neurons after nerve injury in mice. Exp. Neurol. 358, 114227 (2022).

    Article  PubMed  Google Scholar 

  86. Sulaiman, W. & Gordon, T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J. 13, 100–108 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. Scott, B. B., Winograd, J. M. & Redmond, R. W. Surgical approaches for prevention of neuroma at time of peripheral nerve injury. Front. Surg. 9, 819608 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pet, M. A., Ko, J. H., Friedly, J. L., Mourad, P. D. & Smith, D. G. Does targeted nerve implantation reduce neuroma pain in amputees? Clin. Orthop. Relat. Res. 472, 2991–3001 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dumanian, G. A. et al. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann. Surg. 270, 238–246 (2019).

    Article  PubMed  Google Scholar 

  90. Adidharma, W. et al. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury. Muscle Nerve 66, 384–396 (2022).

    Article  PubMed  Google Scholar 

  91. Hooper, R. C. et al. Regenerative peripheral nerve interfaces for the management of symptomatic hand and digital neuromas. Plast. Reconstr. Surg. Glob. Open 8, e2792 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Buchheit, T. et al. Pain phenotypes and associated clinical risk factors following traumatic amputation: results from veterans integrated pain evaluation research (VIPER). Pain Med. 17, 149–161 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Buch, N. S., Qerama, E., Brix Finnerup, N. & Nikolajsen, L. Neuromas and postamputation pain. Pain 161, 147 (2020).

    Article  PubMed  Google Scholar 

  94. Svientek, S. R., Kemp, S. W. P., Cederna, P. S. & Kung, T. A. The clinical significance of a swollen neuroma: a meaningful distinction or an incidental finding? Ann. Palliat. Med. 9, 4412–4415 (2020).

    Article  PubMed  Google Scholar 

  95. Hsu, E. & Cohen, S. P. Postamputation pain: epidemiology, mechanisms, and treatment. J. Pain Res. 6, 121–136 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Bensmaia, S. J., Tyler, D. J. & Micera, S. Restoration of sensory information via bionic hands. Nat. Biomed. Eng. 7, 443–455 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kim, K. A review of haptic feedback through peripheral nerve stimulation for upper extremity prosthetics. Curr. Opin. Biomed. Eng. 21, 100368 (2022).

    Article  Google Scholar 

  98. Zollo, L. et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 4, eaau9924 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. George, J. A. et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4, eaax2352 (2019).

    Article  PubMed  Google Scholar 

  100. McCreery, D. B., Yuen, T. G. H., Agnew, W. F. & Bullara, L. A. A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes. IEEE Trans. Biomed. Eng. 44, 931–939 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Günter, C., Delbeke, J. & Ortiz-Catalan, M. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J. Neuroeng. Rehabil. 16, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sensinger, J. W. & Dosen, S. A review of sensory feedback in upper-limb prostheses from the perspective of human motor control. Front. Neurosci. 14, 345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. D’Anna, E. et al. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 7, 10930 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  104. Wendelken, S. et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J. Neuroeng. Rehabil. 14, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Segil, J. L., Cuberovic, I., Graczyk, E. L., Weir, R. F. F. & Tyler, D. Combination of simultaneous artificial sensory percepts to identify prosthetic hand postures: a case study. Sci. Rep. 10, 6576 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Page, D. M. et al. Discriminability of multiple cutaneous and proprioceptive hand percepts evoked by intraneural stimulation with Utah slanted electrode arrays in human amputees. J. Neuroeng. Rehabil. 18, 12 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Petrini, F. M. et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 11, eaav8939 (2019).

    Article  PubMed  Google Scholar 

  108. Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N. & Dewald, J. P. A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl Acad. Sci. USA 104, 20061–20066 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hebert, J. S. et al. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 765–773 (2014).

    Article  PubMed  Google Scholar 

  110. Hebert, J. S., Chan, K. M. & Dawson, M. R. Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases. Prosthet. Orthot. Int. 40, 303–310 (2016).

    Article  PubMed  Google Scholar 

  111. Marasco, P. D. et al. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 10, eaao6990 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Vu, P. P. et al. Restoration of proprioceptive and cutaneous sensation using regenerative peripheral nerve interfaces in humans with upper limb amputations. Plast. Reconstr. Surg. 149, 1149e–1154e (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clites, T. R., Herr, H. M., Srinivasan, S. S., Zorzos, A. N. & Carty, M. J. The Ewing amputation: the first human implementation of the agonist-antagonist myoneural interface. Plast. Reconstr. Surg. Glob. Open 6, e1997 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Srinivasan, S. S. et al. Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs. Sci. Transl. Med. 12, eabc5926 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Song, H. et al. Agonist-antagonist muscle strain in the residual limb preserves motor control and perception after amputation. Commun. Med. 2, 97 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Srinivasan, S. S. et al. Agonist-antagonist myoneural interfaces in above-knee amputation preserve distal joint function and perception. Ann. Surg. 273, e115–e118 (2021).

    Article  PubMed  Google Scholar 

  117. Rijnbeek, E. H., Eleveld, N. & Olthuis, W. Update on peripheral nerve electrodes for closed-loop neuroprosthetics. Front. Neurosci. 12, 350 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rossini, P. M. et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121, 777–783 (2010).

    Article  PubMed  Google Scholar 

  119. Ngan, C. G. Y., Kapsa, R. M. I. & Choong, P. F. M. Strategies for neural control of prosthetic limbs: from electrode interfacing to 3D printing. Materials 12, 1927 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Warren, D. J. et al. Recording and decoding for neural prostheses. Proc. IEEE 104, 374–391 (2016).

    Article  Google Scholar 

  121. Konsten, J. et al. Comparison of epineural or intramuscular nerve electrodes for stimulated graciloplasty. Dis. Colon Rectum 44, 581–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Ghafoor, U., Kim, S. & Hong, K.-S. Selectivity and longevity of peripheral-nerve and machine interfaces: a review. Front. Neurorobot. 11, 59 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. George, J. A. et al. Long-term performance of Utah slanted electrode arrays and intramuscular electromyographic leads implanted chronically in human arm nerves and muscles. J. Neural Eng. 17, 056042 (2020).

    Article  ADS  PubMed  Google Scholar 

  124. Grill, W. M. & Mortimer, J. T. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J. Biomed. Mater. Res. 50, 215–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Branner, A., Stein, R. B., Fernandez, E., Aoyagi, Y. & Normann, R. A. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans. Biomed. Eng. 51, 146–157 (2004).

    Article  PubMed  Google Scholar 

  126. Renz, A. F., Reichmuth, A. M., Stauffer, F., Thompson-Steckel, G. & Vörös, J. A guide towards long-term functional electrodes interfacing neuronal tissue. J. Neural Eng. 15, 061001 (2018).

    Article  ADS  PubMed  Google Scholar 

  127. Kagan, Z. B. et al. Linear methods for reducing EMG contamination in peripheral nerve motor decodes. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 3422–3425 (2016).

    PubMed  Google Scholar 

  128. Popovic, D. B. et al. Sensory nerve recording for closed-loop control to restore motor functions. IEEE Trans. Biomed. Eng. 40, 1024–1031 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Zbinden, J. et al. Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes. Sci. Transl. Med. 15, eabq3665 (2023).

    Article  PubMed  Google Scholar 

  130. Vu, P. P. et al. Long-term upper-extremity prosthetic control using regenerative peripheral nerve interfaces and implanted EMG electrodes. J. Neural Eng. 20, 026039 (2023).

    Article  ADS  PubMed Central  Google Scholar 

  131. Cheesborough, J. E., Smith, L. H., Kuiken, T. A. & Dumanian, G. A. Targeted muscle reinnervation and advanced prosthetic arms. Semin. Plast. Surg. 29, 62–72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hargrove, L. J. et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N. Engl. J. Med. 369, 1237–1242 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Kuiken, T. A. et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007).

    Article  PubMed  Google Scholar 

  134. Pierrie, S. N., Gaston, R. G. & Loeffler, B. J. Targeted muscle reinnervation for prosthesis optimization and neuroma management in the setting of transradial amputation. J. Hand Surg. Am. 44, 525.e1–525.e8 (2019).

    Article  PubMed  Google Scholar 

  135. Kubiak, C. A., Kemp, S. W. P., Cederna, P. S. & Kung, T. A. Prophylactic regenerative peripheral nerve interfaces to prevent postamputation pain. Plast. Reconstr. Surg. 144, 421e–430e (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Di Valerio, E. et al. Efficacy of targeted muscle reinnervation for treating and preventing postamputation pain — a systematic review. Plast. Aesthet. Res. 9, 62 (2022).

    Article  Google Scholar 

  137. Henderson, J. T., Koenig, Z. A., Climov, M. & Gelman, J. Demystifying targeted muscle reinnervation: a systematic review of nerve transfers for the lower extremity. Plast. Reconstr. Surg. Glob. Open 11, e4894 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kuiken, T. A., Barlow, A. K., Hargrove, L. J. & Dumanian, G. A. Targeted muscle reinnervation for the upper and lower extremity. Tech. Orthop. 32, 109–116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Peters, B. R., Russo, S. A., West, J. M., Moore, A. M. & Schulz, S. A. Targeted muscle reinnervation for the management of pain in the setting of major limb amputation. SAGE Open Med. 8, 205031212095918 (2020).

    Article  Google Scholar 

  140. Hargrove, L. J., Miller, L. A., Turner, K. & Kuiken, T. A. Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: a randomized clinical trial. Sci. Rep. 7, 13840 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  141. Hargrove, L., Miller, L., Turner, K. & Kuiken, T. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis. J. Neuroeng. Rehabil. 15, 60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Simon, A. M. et al. Myoelectric prosthesis hand grasp control following targeted muscle reinnervation in individuals with transradial amputation. PLoS ONE 18, e0280210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mioton, L. M. et al. Targeted muscle reinnervation improves residual limb pain, phantom limb pain, and limb function: a prospective study of 33 major limb amputees. Clin. Orthop. Relat. Res. 478, 2161–2167 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Salminger, S. et al. Outcomes, challenges, and pitfalls after targeted muscle reinnervation in high-level amputees: is it worth the effort? Plast. Reconstr. Surg. 144, 1037e–1043e (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Hebert, J. S., Elzinga, K., Chan, K. M., Olson, J. & Morhart, M. Updates in targeted sensory reinnervation for upper limb amputation. Curr. Surg. Rep. 2, 45 (2014).

    Article  Google Scholar 

  146. Dumanian, G. A. et al. Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast. Reconstr. Surg. 124, 863–869 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Souza, J. M. et al. Targeted muscle reinnervation: a novel approach to postamputation neuroma pain. Clin. Orthop. Relat. Res. 472, 2984–2990 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  148. Felder, J. M. et al. Failed targeted muscle reinnervation: findings at revision surgery and concepts for success. Plast. Reconstr. Surg. Glob. Open 10, e4229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bowen, J. B., Ruter, D., Wee, C., West, J. & Valerio, I. L. Targeted muscle reinnervation technique in below-knee amputation. Plast. Reconstr. Surg. 143, 309–312 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Schofield, J. S., Shell, C. E., Beckler, D. T., Thumser, Z. C. & Marasco, P. D. Long-term home-use of sensory-motor-integrated bidirectional bionic prosthetic arms promotes functional, perceptual, and cognitive changes. Front. Neurosci. 14, 120 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Serino, A. et al. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain 140, 2993–3011 (2017).

    Article  PubMed  Google Scholar 

  152. Gardetto, A. et al. Reduction of phantom limb pain and improved proprioception through a TSR-based surgical technique: a case series of four patients with lower limb amputation. J. Clin. Med. 10, 4029 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 747–758 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wells, M. R., Vaidya, U., Ricci, J. L. & Christie, C. A neuromuscular platform to extract electrophysiological signals from lesioned nerves: a technical note. J. Rehabil. Res. Dev. 38, 385–390 (2001).

    CAS  PubMed  Google Scholar 

  155. Baldwin, J., Moon, J., Cederna, P. & Urbanchek, M. Early muscle revascularization and regeneration at the regenerative peripheral nerve interface. Plast. Reconstr. Surg. 130, abstr. 99 (2012).

    Article  Google Scholar 

  156. Leach, G. A. et al. Regenerative peripheral nerve interface surgery: anatomic and technical guide. Plast. Reconstr. Surg. Glob. Open 11, e5127 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. von Guionneau, N. et al. Vascularized Denervated Muscle Targets Deliver High Quality Signal Amplification. ASPN Nerve Week https://meeting.peripheralnerve.org/abstracts/2021/P13.cgi (2021).

  158. Valerio, I., Schulz, S. A., West, J., Westenberg, R. F. & Eberlin, K. R. Targeted muscle reinnervation combined with a vascularized pedicled regenerative peripheral nerve interface. Plast. Reconstr. Surg. Glob. Open 8, e2689 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Herr, H. M., Riso, R. R., Song, K. W. Jr, Casler, R. J. & Carty, M. J. Peripheral neural interface via nerve regeneration to distal tissues. US patent 20150173918A1 (2015).

  160. Srinivasan, S. S. et al. On prosthetic control: a regenerative agonist-antagonist myoneural interface. Sci. Robot. 2, eaan2971 (2017).

    Article  PubMed  Google Scholar 

  161. Clites, T. R., Carty, M. J., Srinivasan, S., Zorzos, A. N. & Herr, H. M. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. J. Neural Eng. 14, 036002 (2017).

    Article  ADS  PubMed  Google Scholar 

  162. Herr, H. M. et al. Method and system for providing proprioceptive feedback and functionality mitigating limb pathology. US patent 20190021883A1 (2019).

  163. Srinivasan, S. S., Diaz, M., Carty, M. & Herr, H. M. Towards functional restoration for persons with limb amputation: a dual-stage implementation of regenerative agonist-antagonist myoneural interfaces. Sci. Rep. 9, 1981 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  164. Clites, T. R. et al. Caprine models of the agonist-antagonist myoneural interface implemented at the above- and below-knee amputation levels. Plast. Reconstr. Surg. 144, 218e–229e (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Farahat, W. A. & Herr, H. M. Optimal workloop energetics of muscle-actuated systems: an impedance matching view. PLoS Comput. Biol. 6, e1000795 (2010).

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  166. Shu, T. et al. Modulation of prosthetic ankle plantarflexion through direct myoelectric control of a subject-optimized neuromuscular model. IEEE Robot. Autom. Lett. 7, 7620–7627 (2022).

    Article  Google Scholar 

  167. Srinivasan, S. S. et al. Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proc. Natl Acad. Sci. USA 118, e2019555118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Herr, H. & Carty, M. J. The agonist-antagonist myoneural interface. Tech. Orthop. 36, 337–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kubiak, C. A. et al. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. J. Neural Eng. 18, 0460d5 (2021).

    Article  Google Scholar 

  170. Svientek, S. R. et al. The muscle cuff regenerative peripheral nerve interface for the amplification of intact peripheral nerve signals. J. Vis. Exp. 179, e63222 (2022).

    Google Scholar 

  171. Svientek, S. R. et al. QS7: physiologic signaling of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) during volitional behavior. Plast. Reconstr. Surg. Glob. Open 9, 19–20 (2021).

    Article  PubMed Central  Google Scholar 

  172. Svientek, S. R., Ursu, D. C., Cederna, P. S. & Kemp, S. W. P. Fabrication of the composite regenerative peripheral nerve interface (C-RPNI) in the adult rat. J. Vis. Exp. 156, e60841 (2020).

    Google Scholar 

  173. Svientek, S., Dehdashtian, A., Bratley, J., Cederna, P. S. & Kemp, S. W P. Surface-level regenerative peripheral nerve interfaces (RPNIs) for a novel control method of advanced prosthetic devices. ASPN Nerve Week https://meeting.peripheralnerve.org/abstracts/2021/P2.cgi (2021).

  174. Sando, I. C. et al. Dermal-based peripheral nerve interface for transduction of sensory feedback. Plast. Reconstr. Surg. 136, 19–20 (2015).

    Article  Google Scholar 

  175. Sando, I. C. et al. Dermal sensory regenerative peripheral nerve interface (DS-RPNI) for re-establishing sensory nerve feedback in peripheral afferents in the rat. Plast. Reconstr. Surg. 151, 804e–813e (2022).

    Article  PubMed  Google Scholar 

  176. Lee, J. C., Adidharma, W., Dehdashtian, A., Cederna, P. S. & Kemp, S. W. QS35. Dermal sensory regenerative peripheral nerve interface (DS-RPNI) for multimodal sensory feedback. Plast. Reconstr. Surg. Glob. Open 10, 112 (2022).

    Article  Google Scholar 

  177. Calotta, N. A., Hanwright, P. J., Giladi, A. & Tuffaha, S. H. Vascularized, denervated muscle targets for treatment of symptomatic neuromas in the upper extremity: description of operative technique. Tech. Hand Up. Extrem. Surg. 26, 141–145 (2022).

    Article  PubMed  Google Scholar 

  178. Tuffaha, S. H. et al. Vascularized, denervated muscle targets: a novel approach to treat and prevent symptomatic neuromas. Plast. Reconstr. Surg. Glob. Open 8, e2779 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Suresh, V., Schaefer, E. J., Calotta, N. A., Giladi, A. M. & Tuffaha, S. H. Use of vascularized, denervated muscle targets for prevention and treatment of upper-extremity neuromas. J. Hand Surg. Glob. Online 5, 92–96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Woo, S. L. et al. Regenerative peripheral nerve interfaces for the treatment of postamputation neuroma pain: a pilot study. Plast. Reconstr. Surg. Glob. Open 4, e1038 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Burke, K. L., Kung, T. A., Hooper, R. C., Kemp, S. W. P. & Cederna, P. S. Regenerative peripheral nerve interfaces (RPNIs): current status and future direction. Plast. Aesthet. Res. 9, 48 (2022).

    Article  Google Scholar 

  182. Larson, J. V. et al. Prototype sensory regenerative peripheral nerve interface for artificial limb somatosensory feedback. Plast. Reconstr. Surg. 133, abstr. 17 (2014).

    Article  Google Scholar 

  183. Srinivasan, S. & Herr, H. M. A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng. 6, 731–740 (2022).

    Article  Google Scholar 

  184. Herr, H., Song, H. & Srinivasan, S. Mechanoneural interfaces for prosthetic control. US patent 20230050411A1 (2023).

  185. Cederna, P., Nghiem, B., Hu, Y., Sando, I. & Urbanchek, M. Sensory protection to enhance functional recovery following proximal nerve injuries: current trends. Plast. Aesthet. Res. 2, 202 (2015).

    Article  Google Scholar 

  186. Li, G. et al. in Neural Interface: Frontiers and Applications (ed. Zheng, X.) 149–166 (Springer, 2019).

  187. Samuel, O. W. et al. Intelligent EMG pattern recognition control method for upper-limb multifunctional prostheses: advances, current challenges, and future prospects. IEEE Access 7, 10150–10165 (2019).

    Article  Google Scholar 

  188. Ortiz-Catalan, M., Håkansson, B. & Brånemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).

    Article  PubMed  Google Scholar 

  189. Tarantino, S., Clemente, F., Barone, D., Controzzi, M. & Cipriani, C. The myokinetic control interface: tracking implanted magnets as a means for prosthetic control. Sci. Rep. 7, 17149 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  190. Moradi, A. et al. Clinical implementation of a bionic hand controlled with kineticomyographic signals. Sci. Rep. 12, 14805 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hettiarachchi, N., Ju, Z. & Liu, H. A new wearable ultrasound muscle activity sensing system for dexterous prosthetic control. in IEEE International Conference on Systems, Man, and Cybernetics (ed. O'Conner, L.) 1415–1420 (IEEE, 2015).

  192. Akhlaghi, N. et al. Real-time classification of hand motions using ultrasound imaging of forearm muscles. IEEE Trans. Biomed. Eng. 63, 1687–1698 (2016).

    Article  PubMed  Google Scholar 

  193. Hartmann, C., Došen, S., Amsuess, S. & Farina, D. Closed-loop control of myoelectric prostheses with electrotactile feedback: influence of stimulation artifact and blanking. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 807–816 (2015).

    Article  PubMed  Google Scholar 

  194. Srinivasan, S. S., Maimon, B. E., Diaz, M., Song, H. & Herr, H. M. Closed-loop functional optogenetic stimulation. Nat. Commun. 9, 5303 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Montero, J., Clemente, F. & Cipriani, C. Feasibility of generating 90 Hz vibrations in remote implanted magnets. Sci. Rep. 11, 15456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Maimon, B. E. et al. Optogenetic peripheral nerve immunogenicity. Sci. Rep. 8, 14076 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  197. Fleming, A. et al. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. J. Neural Eng. 18, 041004 (2021).

    Article  ADS  Google Scholar 

  198. Das, S. et al. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen. Med. 5, 11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Münger, M. et al. Protective and risk factors for phantom limb pain and residual limb pain severity. Pain Pract. 20, 578–587 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Shu, T., Huang, S. S., Shallal, C. & Herr, H. M. Restoration of bilateral motor coordination from preserved agonist-antagonist coupling in amputation musculature. J. Neuroeng. Rehabil. 18, 38 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the K. Lisa Yang Center for Bionics at the Massachusetts Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and G.H. researched data, contributed to content discussion, wrote the manuscript and contributed equally. C.T. researched data, contributed to content discussion and wrote the manuscript. H.H. contributed to content discussion and wrote the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Hugh M. Herr.

Ethics declarations

Competing interests

H.H. holds patents on AMI and CMI mechanoneural interfacing technologies. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Paul Marasco and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, T., Herrera-Arcos, G., Taylor, C.R. et al. Mechanoneural interfaces for bionic integration. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00151-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00151-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing