Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems metabolic engineering of microorganisms for food and cosmetics production

Abstract

The demand for sustainable and environmentally friendly sources of foods and cosmetics is increasing owing to concerns about the rapid growth of the global population and climate change. Microorganisms are promising cell factories in which to produce various food and cosmetic ingredients. However, the commercialization of microbial-based food and cosmetic compounds is still limited by the insufficient performances of microbial strains and processes. Systems metabolic engineering can improve the performance of microorganisms. In this Review, we highlight food and cosmetic compounds that can be produced using microorganisms. We then discuss systems metabolic engineering, with its different phases that include production mode and host selection, metabolic pathway reconstruction, tolerance enhancement, metabolic flux and fermentation process optimization, downstream process integration and scale-up, which can be optimized to improve the development of high-performance microbial processes. Finally, we overview the current limitations and future directions of industrializing microbial processes for the production of food and cosmetic compounds.

Key points

  • Microorganisms can serve as green factories for the production of food and cosmetic products.

  • A growing number of food and cosmetic compounds are commercially produced from renewable substrates using microorganisms.

  • Systems metabolic engineering could facilitate the development of high-performance microbial cell factories.

  • Various tools and strategies are powering up systems metabolic engineering, such as synthetic/systems biology tools and process/evolutionary engineering strategies.

  • Raw materials, performance of microbial strains, fermentation and downstream processes, process scale-up, economic aspects, and societal demands and perception should be collectively considered for the successful commercialization of microbial processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial production of food and cosmetic products.
Fig. 2: Metabolic pathways for producing carbohydrates, fatty acids, lipids, terpenoids and fat-soluble vitamins.
Fig. 3: Metabolic pathways for producing amino acids, short-chain alcohols, small organic acids, nucleotides and vitamins.
Fig. 4: Applying systems metabolic engineering tools and strategies to optimize metabolic fluxes.

Similar content being viewed by others

References

  1. Choi, K. R., Yu, H. E. & Lee, S. Y. Microbial food: microorganisms repurposed for our food. Microb. Biotechnol. 15, 18–25 (2022).

    Article  Google Scholar 

  2. Behnassi, M. & El Haiba, M. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 6, 754–755 (2022).

    Article  Google Scholar 

  3. Choi, K. R. et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019). This article reports the tools and strategies of systems metabolic engineering and recent trends.

    Article  Google Scholar 

  4. Ko, Y. S. et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem. Soc. Rev. 49, 4615–4636 (2020).

    Article  Google Scholar 

  5. Park, J. H., Lee, K. H., Kim, T. Y. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl Acad. Sci. USA 104, 7797–7802 (2007). This article was the first to report the application of systems metabolic engineering to improve the microbial production of compounds.

    Article  Google Scholar 

  6. Lee, K. H., Park, J. H., Kim, T. Y., Kim, H. U. & Lee, S. Y. Systems metabolic engineering of Escherichia coli for l-threonine production. Mol. Syst. Biol. 3, 149 (2007).

    Article  Google Scholar 

  7. Zhang, D. et al. Reducing lactate secretion by ldhA deletion in l-glutamate- producing strain Corynebacterium glutamicum GDK-9. Braz. J. Microbiol. 45, 1477–1483 (2014).

    Article  Google Scholar 

  8. Ahn, J. H. et al. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nat. Commun. 11, 1970 (2020).

    Article  Google Scholar 

  9. Huang, J. et al. High yield and cost‐effective production of poly (γ‐glutamic acid) with Bacillus subtilis. Eng. Life Sci. 11, 291–297 (2011).

    Article  Google Scholar 

  10. Jiang, L. et al. Aeration and fermentation strategies on nisin production. Biotechnol. Lett. 37, 2039–2045 (2015).

    Article  Google Scholar 

  11. Zhu, Y. et al. Construction of allitol synthesis pathway by multi-enzyme coexpression in Escherichia coli and its application in allitol production. J. Ind. Microbiol. Biotechnol. 42, 661–669 (2015).

    Article  Google Scholar 

  12. Patel, S. N., Kaushal, G. & Singh, S. P. A novel d-allulose 3-epimerase gene from the metagenome of a thermal aquatic habitat and d-allulose production by Bacillus subtilis whole-cell catalysis. Appl. Environ. Microbiol. 86, e02605-19 (2020).

    Article  Google Scholar 

  13. Shin, K. C., Sim, D. H., Seo, M. J. & Oh, D. K. Increased production of food-grade d-tagatose from d-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificans. J. Agric. Food Chem. 64, 8146–8153 (2016).

    Article  Google Scholar 

  14. Jagtap, S. S. & Rao, C. V. Production of d-arabitol from d-xylose by the oleaginous yeast Rhodosporidium toruloides IFO0880. Appl. Microbiol. Biotechnol. 102, 143–151 (2018).

    Article  Google Scholar 

  15. Li, S. et al. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab. Eng. 64, 26–40 (2021).

    Article  Google Scholar 

  16. Yuan, X. et al. Increasing NADPH availability for xylitol production via pentose-phosphate-pathway gene overexpression and Embden–Meyerhof–Parnas-pathway gene deletion in Escherichia coli. J. Agric. Food Chem. 69, 9625–9631 (2021).

    Article  Google Scholar 

  17. Li, M. H. et al. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresour. Technol. 101, 8294–8299 (2010).

    Article  Google Scholar 

  18. Yang, L. B. et al. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 151, 120–127 (2014).

    Article  Google Scholar 

  19. Yang, J. et al. Pathway construction in Corynebacterium glutamicum and strain engineering to produce rare sugars from glycerol. J. Agric. Food Chem. 64, 9497–9505 (2016).

    Article  Google Scholar 

  20. Liu, J. J. et al. l-Fucose production by engineered Escherichia coli. Biotechnol. Bioeng. 116, 904–911 (2019).

    Article  Google Scholar 

  21. Ni, Z. et al. Multi-path optimization for efficient production of 2’-fucosyllactose in an engineered Escherichia coli C41 (DE3) derivative. Front. Bioeng. Biotechnol. 8, 611900 (2020).

    Article  Google Scholar 

  22. Wang, Y. et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat. Commun. 11, 3120 (2020).

    Article  Google Scholar 

  23. Cerminati, S. et al. Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain. Appl. Microbiol. Biotechnol. 105, 3075–3086 (2021).

    Article  Google Scholar 

  24. Jin, P., Kang, Z., Yuan, P., Du, G. & Chen, J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab. Eng. 35, 21–30 (2016).

    Article  Google Scholar 

  25. Zhou, Z. et al. A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans. Biotechnol. Bioeng. 115, 1561–1570 (2018).

    Article  Google Scholar 

  26. Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J. & Lee, S. Y. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol. 15, 721–729 (2019).

    Article  Google Scholar 

  27. Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 1549–1558.e14 (2018).

    Article  Google Scholar 

  28. Okuda, T. et al. Omega-3 eicosatetraenoic acid production by molecular breeding of the mutant strain S14 derived from Mortierella alpina 1S-4. J. Biosci. Bioeng. 120, 299–304 (2015).

    Article  Google Scholar 

  29. Okuda, T. et al. Eicosapentaenoic acid (EPA) production by an oleaginous fungus Mortierella alpina expressing heterologous the Δ17‐desaturase gene under ordinary temperature. Eur. J. Lipid Sci. Technol. 117, 1919–1927 (2015).

    Article  Google Scholar 

  30. Li, Z. et al. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J. Agric. Food Chem. 66, 5382–5391 (2018).

    Article  Google Scholar 

  31. Guo, D. S., Ji, X. J., Ren, L. J., Li, G. L. & Huang, H. Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high‐oxygen‐supply bioreactor. AIChE J. 63, 4278–4286 (2017).

    Article  Google Scholar 

  32. Nyyssola, A., Suhonen, A., Ritala, A. & Oksman-Caldentey, K. M. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 75, 102686 (2022).

    Article  Google Scholar 

  33. Banks, M., Johnson, R., Giver, L., Bryant, G. & Guo, M. Industrial production of microbial protein products. Curr. Opin. Biotechnol. 75, 102707 (2022).

    Article  Google Scholar 

  34. Bilal, M. et al. Bioprospecting and biotechnological insights into sweet-tasting proteins by microbial hosts — a review. Bioengineered 13, 9815–9828 (2022).

    Article  Google Scholar 

  35. Raveendran, S. et al. Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56, 16–30 (2018).

    Article  Google Scholar 

  36. Okpara, M. O. Microbial enzymes and their applications in food industry: a mini-review. Adv. Enzyme Res. 10, 23–47 (2022).

    Article  Google Scholar 

  37. Gupta, P. L., Rajput, M., Oza, T., Trivedi, U. & Sanghvi, G. Eminence of microbial products in cosmetic industry. Nat. Prod. Bioprospect. 9, 267–278 (2019).

    Article  Google Scholar 

  38. Sunar, K., Kumar, U. & Deshmukh, S. in Agro-Industrial Wastes as Feedstock for Enzyme Production (eds Dhillon, G. S. & Kaur, S.) 279–298 (Elsevier, 2016).

  39. Chen, H. et al. A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism. World J. Microbiol. Biotechnol. 36, 117 (2020).

    Article  Google Scholar 

  40. Kongklom, N., Shi, Z., Chisti, Y. & Sirisansaneeyakul, S. Enhanced production of poly-γ-glutamic acid by Bacillus licheniformis TISTR 1010 with environmental controls. Appl. Biochem. Biotechnol. 182, 990–999 (2017).

    Article  Google Scholar 

  41. Zhou, L., Deng, C., Cui, W. J., Liu, Z. M. & Zhou, Z. M. Efficient l-alanine production by a thermo-regulated switch in Escherichia coli. Appl. Biochem. Biotechnol. 178, 324–337 (2016).

    Article  Google Scholar 

  42. Yamamoto, S. et al. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 78, 4447–4457 (2012).

    Article  Google Scholar 

  43. Hasegawa, S. et al. Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl. Environ. Microbiol. 78, 865–875 (2012).

    Article  Google Scholar 

  44. Huang, Q., Liang, L., Wu, W., Wu, S. & Huang, J. Metabolic engineering of Corynebacterium glutamicum to enhance l-leucine production. Afr. J. Biotechnol. 16, 1048–1060 (2017).

    Article  Google Scholar 

  45. Yin, L., Zhao, J., Chen, C., Hu, X. & Wang, X. Enhancing the carbon flux and NADPH supply to increase l-isoleucine production in Corynebacterium glutamicum. Biotechnol. Bioprocess. Eng. 19, 132–142 (2014).

    Article  Google Scholar 

  46. Xu, J. Z., Ruan, H. Z., Yu, H. B., Liu, L. M. & Zhang, W. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of l-lysine production from mixed sugar. Microb. Cell Fact. 19, 39 (2020).

    Article  Google Scholar 

  47. Zhang, X. et al. High-yield production of l-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum. Microb. Cell Fact. 19, 115 (2020).

    Article  Google Scholar 

  48. Wang, C., Wu, J., Shi, B., Shi, J. & Zhao, Z. Improving l-serine formation by Escherichia coli by reduced uptake of produced l-serine. Microb. Cell Fact. 19, 66 (2020).

    Article  Google Scholar 

  49. Liu, Y. et al. Genetic engineering of Escherichia coli to improve l-phenylalanine production. BMC Biotechnol. 18, 5 (2018).

    Article  Google Scholar 

  50. Patnaik, R., Zolandz, R. R., Green, D. A. & Kraynie, D. F. l-Tyrosine production by recombinant Escherichia coli: fermentation optimization and recovery. Biotechnol. Bioeng. 99, 741–752 (2008). This article reports a systematically optimized scaled-up fermentation for tyrosine production and the downstream processes for recovering and purifying tyrosine.

    Article  Google Scholar 

  51. Kim, B., Binkley, R., Kim, H. U. & Lee, S. Y. Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine. Biotechnol. Bioeng. 115, 2554–2564 (2018).

    Article  Google Scholar 

  52. Du, L., Zhang, Z., Xu, Q. & Chen, N. Central metabolic pathway modification to improve l-tryptophan production in Escherichia coli. Bioengineered 10, 59–70 (2019).

    Article  Google Scholar 

  53. Wu, H. et al. Highly efficient production of l-histidine from glucose by metabolically engineered Escherichia coli. ACS Synth. Biol. 9, 1813–1822 (2020).

    Article  Google Scholar 

  54. Yang, D. et al. Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metab. Eng. 54, 180–190 (2019).

    Article  Google Scholar 

  55. Zhao, L. et al. Expression regulation of multiple key genes to improve l-threonine in Escherichia coli. Microb. Cell Fact. 19, 46 (2020).

    Article  Google Scholar 

  56. Huang, J. F. et al. Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: the molecular fundamentals of l-methionine biosynthesis in Escherichia coli. ACS Synth. Biol. 7, 2577–2589 (2018).

    Article  Google Scholar 

  57. Li, B. et al. Rerouting fluxes of the central carbon metabolism and relieving mechanism-based inactivation of l-aspartate-α-decarboxylase for fermentative production of β-alanine in Escherichia coli. ACS Synth. Biol. 11, 1908–1918 (2022).

    Article  Google Scholar 

  58. Man, Z. et al. Systems pathway engineering of Corynebacterium crenatum for improved l-arginine production. Sci. Rep. 6, 28629 (2016).

    Article  Google Scholar 

  59. Park, S. H. et al. Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat. Commun. 5, 4618 (2014). This article reports SysME strategies for developing industrially competitive Corynebacterium glutamicum strain for l-arginine production.

    Article  Google Scholar 

  60. Xu, M. et al. Development of a novel biosensor-driven mutation and selection system via in situ growth of Corynebacterium crenatum for the production of l-arginine. Front. Bioeng. Biotechnol. 8, 175 (2020).

    Article  Google Scholar 

  61. Zhang, J. et al. De novo engineering of Corynebacterium glutamicum for l-proline production. ACS Synth. Biol. 9, 1897–1906 (2020).

    Article  Google Scholar 

  62. Hao, N. et al. Improvement of l-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. J. Ind. Microbiol. Biotechnol. 42, 307–313 (2015).

    Article  Google Scholar 

  63. Zhang, B., Gao, G., Chu, X. H. & Ye, B. C. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose. Bioresour. Technol. 284, 204–213 (2019).

    Article  Google Scholar 

  64. Liu, H., Hou, Y., Wang, Y. & Li, Z. Enhancement of sulfur conversion rate in the production of l-cysteine by engineered Escherichia coli. J. Agric. Food Chem. 68, 250–257 (2020).

    Article  Google Scholar 

  65. Bang, H. B., Lee, Y. H., Kim, S. C., Sung, C. K. & Jeong, K. J. Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb. Cell Fact. 15, 16 (2016).

    Article  Google Scholar 

  66. Luo, Z. W. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of benzoic acid from glucose. Metab. Eng. 62, 298–311 (2020).

    Article  Google Scholar 

  67. Guo, J. et al. Cloning and identification of a novel tyrosinase and its overexpression in Streptomyces kathirae SC-1 for enhancing melanin production. FEMS Microbiol. Lett. 362, fnv041 (2015).

    Article  Google Scholar 

  68. Chavez-Bejar, M. I. et al. Metabolic engineering of Escherichia coli to optimize melanin synthesis from glucose. Microb. Cell Fact. 12, 108 (2013).

    Article  Google Scholar 

  69. Grewal, P. S., Modavi, C., Russ, Z. N., Harris, N. C. & Dueber, J. E. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab. Eng. 45, 180–188 (2018).

    Article  Google Scholar 

  70. Zhou, S., Hao, T. & Zhou, J. Fermentation and metabolic pathway optimization to de novo synthesize (2S)-naringenin in Escherichia coli. J. Microbiol. Biotechnol. 30, 1574–1582 (2020).

    Article  Google Scholar 

  71. Du, Y., Yang, B., Yi, Z., Hu, L. & Li, M. Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids. J. Agric. Food Chem. 68, 2146–2154 (2020).

    Article  Google Scholar 

  72. Eichenberger, M., Hansson, A., Fischer, D., Durr, L. & Naesby, M. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res. 18, foy046 (2018).

    Article  Google Scholar 

  73. Yang, J. et al. Green production of silybin and isosilybin by merging metabolic engineering approaches and enzymatic catalysis. Metab. Eng. 59, 44–52 (2020).

    Article  Google Scholar 

  74. Jones, J. A. et al. Complete biosynthesis of anthocyanins using E. coli polycultures. mBio 8, e00621-17 (2017).

    Article  Google Scholar 

  75. Hansen, E. H. et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75, 2765–2774 (2009).

    Article  Google Scholar 

  76. Luo, Z. W., Cho, J. S. & Lee, S. Y. Microbial production of methyl anthranilate, a grape flavor compound. Proc. Natl Acad. Sci. USA 116, 10749–10756 (2019).

    Article  Google Scholar 

  77. Dinh, C. V. & Prather, K. L. J. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. Proc. Natl Acad. Sci. USA 116, 25562–25568 (2019).

    Article  Google Scholar 

  78. Du, J., Yang, D., Luo, Z. W. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J. Biotechnol. 267, 19–28 (2018).

    Article  Google Scholar 

  79. Yang, D., Park, S. Y. & Lee, S. Y. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv. Sci. 8, e2100743 (2021).

    Article  Google Scholar 

  80. Choi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 3178–3193 (2022). This article reports strategies for optimizing a fermentation process for production of haem using an engineered Escherichia coli strain.

    Article  Google Scholar 

  81. Ko, Y. J. et al. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66, 217–228 (2021).

    Article  Google Scholar 

  82. Choi, K. R., Yu, H. E. & Lee, S. Y. Production of zinc protoporphyrin IX by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 3319–3325 (2022).

    Article  Google Scholar 

  83. Ghiffary, M. R. et al. High-level production of the natural blue pigment indigoidine from metabolically engineered Corynebacterium glutamicum for sustainable fabric dyes. ACS Sustain. Chem. Eng. 9, 6613–6622 (2021).

    Article  Google Scholar 

  84. Giesselmann, G. et al. Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnol. J. 14, e1800417 (2019).

    Article  Google Scholar 

  85. Liu, W. et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels 9, 58 (2016).

    Article  Google Scholar 

  86. Wang, X. et al. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags. Metab. Eng. 66, 60–67 (2021).

    Article  Google Scholar 

  87. Dusseaux, S., Wajn, W. T., Liu, Y., Ignea, C. & Kampranis, S. C. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc. Natl Acad. Sci. USA 117, 31789–31799 (2020).

    Article  Google Scholar 

  88. Rolf, J., Julsing, M. K., Rosenthal, K. & Lutz, S. A gram-scale limonene production process with engineered Escherichia coli. Molecules 25, 1881 (2020).

    Article  Google Scholar 

  89. Liu, Y. et al. Engineering the oleaginous yeast Yarrowia lipolytica for production of alpha-farnesene. Biotechnol. Biofuels 12, 296 (2019).

    Article  Google Scholar 

  90. Meadows, A. L. et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537, 694–697 (2016). This article reports a systematically developed industrially relevant microbial strain for β-farnesene production.

    Article  Google Scholar 

  91. Cha, Y. et al. Probing the synergistic ratio of P450/CPR to improve (+)-nootkatone production in Saccharomyces cerevisiae. J. Agric. Food Chem. 70, 815–825 (2022).

    Article  Google Scholar 

  92. Mikkelsen, M. D. et al. Methods for improved production of rebaudioside D and rebaudioside M. US patent 10,612,066 (2014).

  93. Zhu, Z. T. et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction. Metab. Eng. 68, 232–245 (2021).

    Article  Google Scholar 

  94. Li, D. et al. Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production. Chem. Eng. Sci. 218, 115529 (2020).

    Article  Google Scholar 

  95. Sun, Z. J. et al. Combined biosynthetic pathway engineering and storage pool expansion for high-level production of ergosterol in industrial Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 9, 681666 (2021).

    Article  Google Scholar 

  96. Guo, X. J. et al. Compartmentalized reconstitution of post-squalene pathway for 7-dehydrocholesterol overproduction in Saccharomyces cerevisiae. Front. Microbiol. 12, 663973 (2021).

    Article  Google Scholar 

  97. Sun, T. et al. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol. Lett. 36, 1515–1522 (2014).

    Article  Google Scholar 

  98. Luo, Z. et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab. Eng. 61, 344–351 (2020).

    Article  Google Scholar 

  99. Larroude, M. et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene. Biotechnol. Bioeng. 115, 464–472 (2018).

    Article  Google Scholar 

  100. Shen, H. J. et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metab. Eng. 38, 180–190 (2016).

    Article  Google Scholar 

  101. Gong, Z. et al. Coordinated expression of astaxanthin biosynthesis genes for improved astaxanthin production in Escherichia coli. J. Agric. Food Chem. 68, 14917–14927 (2020).

    Article  Google Scholar 

  102. Park, S. Y., Eun, H., Lee, M. H. & Lee, S. Y. Metabolic engineering of Escherichia coli with electron channelling for the production of natural products. Nat. Catal. 5, 726–737 (2022). This study reports the electron channelling strategy to improve the microbial production of lutein and other natural products.

    Article  Google Scholar 

  103. Sun, L., Kwak, S. & Jin, Y. S. Vitamin A production by engineered Saccharomyces cerevisiae from sylose via two-phase in situ extraction. ACS Synth. Biol. 8, 2131–2140 (2019).

    Article  Google Scholar 

  104. Han, M. & Lee, P. C. Microbial production of bioactive retinoic acid using metabolically engineered Escherichia coli. Microorganisms 9, 1520 (2021).

    Article  Google Scholar 

  105. Hu, Q., Zhang, T., Yu, H. & Ye, L. Selective biosynthesis of retinol in S. cerevisiae. Bioresour. Bioprocess. 9, 22 (2022).

    Article  Google Scholar 

  106. van Maris, A. J. et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microbiol. 70, 159–166 (2004).

    Article  Google Scholar 

  107. Forster, A., Aurich, A., Mauersberger, S. & Barth, G. Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 75, 1409–1417 (2007).

    Article  Google Scholar 

  108. Li, C., Gao, S., Yang, X. & Lin, C. S. K. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor. Bioresour. Technol. 249, 612–619 (2018).

    Article  Google Scholar 

  109. Chung, S. C., Park, J. S., Yun, J. & Park, J. H. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metab. Eng. 40, 157–164 (2017).

    Article  Google Scholar 

  110. Yamane, T. & Tanaka, R. Highly accumulative production of l(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J. Biosci. Bioeng. 115, 90–95 (2013).

    Article  Google Scholar 

  111. Brock, S., Kuenz, A. & Prüße, U. Impact of hydrolysis methods on the utilization of agricultural residues as nutrient source for d-lactic acid production by Sporolactobacillus inulinus. Fermentation 5, 12 (2019).

    Article  Google Scholar 

  112. Tsuge, Y. et al. Metabolic engineering of Corynebacterium glutamicum for hyperproduction of polymer-grade l- and d-lactic acid. Appl. Microbiol. Biotechnol. 103, 3381–3391 (2019).

    Article  Google Scholar 

  113. Jiang, L. et al. Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnol. Bioeng. 108, 31–40 (2011).

    Article  Google Scholar 

  114. Deng, Y. et al. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metab. Eng. 46, 28–34 (2018).

    Article  Google Scholar 

  115. Pereira, B. et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab. Eng. 34, 80–87 (2016).

    Article  Google Scholar 

  116. Liu, M., Ding, Y., Xian, M. & Zhao, G. Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli. Microb. Cell Fact. 17, 51 (2018).

    Article  Google Scholar 

  117. Bae, S. J., Kim, S. & Hahn, J. S. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci. Rep. 6, 27667 (2016).

    Article  Google Scholar 

  118. Li, Z. et al. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose. Metab. Eng. 70, 79–88 (2022).

    Article  Google Scholar 

  119. Yamamoto, S., Suda, M., Niimi, S., Inui, M. & Yukawa, H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol. Bioeng. 110, 2938–2948 (2013).

    Article  Google Scholar 

  120. Su, H., Chen, H. & Lin, J. Enriching the production of 2-methyl-1-butanol in fermentation process using Corynebacterium crenatum. Curr. Microbiol. 77, 1699–1706 (2020).

    Article  Google Scholar 

  121. Zhao, E. M. et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555, 683–687 (2018).

    Article  Google Scholar 

  122. Xin, F., Basu, A., Yang, K. L. & He, J. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Bioresour. Technol. 202, 214–219 (2016).

    Article  Google Scholar 

  123. Yang, D., Jang, W. D. & Lee, S. Y. Production of carminic acid by metabolically engineered Escherichia coli. J. Am. Chem. Soc. 143, 5364–5377 (2021). This study reports the microbial production of carminic acid by applying SysME strategies.

    Article  Google Scholar 

  124. Kim, H.-S. et al. Microorganism producing 5′-inosinic acid and process for producing 5′-inosinic acid using the same. US patent 7,244,608 (2007).

  125. Cho, J., Kim, H. W., Oh, Y. S. & Park, J. H. Corynebacteria strain for enhancement of 5′-guanosine monophosphate productivity and a method of producing 5′-guanosine monophosphate using the same. US patent 8,530,200 (2013).

  126. Lee, K. H. et al. Microorganism for producing riboflavin and method for producing riboflavin using the same. US patent 7,166,456 (2007).

  127. Serrano-Amatriain, C. et al. Folic acid production by engineered Ashbya gossypii. Metab. Eng. 38, 473–482 (2016).

    Article  Google Scholar 

  128. Maekawa, T. & Zhang, Z. Y. Method for producing vitamin B12 from hydrogen-metabolizing methane bacterium. US patent 7,018,815 (2006).

  129. Cardinale, S., Tueros, F. G. & Sommer, M. O. A. Genetic-metabolic coupling for targeted metabolic engineering. Cell Rep. 20, 1029–1037 (2017).

    Article  Google Scholar 

  130. Shen, B. et al. Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat. Commun. 11, 5155 (2020).

    Article  Google Scholar 

  131. Yuan, P. et al. Engineering a ComA quorum-sensing circuit to dynamically control the production of menaquinone-4 in Bacillus subtilis. Enzyme Microb. Technol. 147, 109782 (2021).

    Article  Google Scholar 

  132. Gao, Q. et al. Highly efficient production of menaquinone-7 from glucose by metabolically engineered Escherichia coli. ACS Synth. Biol. 10, 756–765 (2021).

    Article  Google Scholar 

  133. Zhang, L. et al. Phosphate limitation increases coenzyme Q10 production in industrial Rhodobacter sphaeroides HY01. Synth. Syst. Biotechnol. 4, 212–219 (2019).

    Article  Google Scholar 

  134. Fleige, C., Meyer, F. & Steinbuchel, A. Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl. Environ. Microbiol. 82, 3410–3419 (2016).

    Article  Google Scholar 

  135. Wang, Q. et al. Efficient biosynthesis of vanillin from isoeugenol by recombinant isoeugenol monooxygenase from Pseudomonas nitroreducens Jin1. Appl. Biochem. Biotechnol. 193, 1116–1128 (2021).

    Article  Google Scholar 

  136. Wang, Z., Liu, Z., Cui, W. & Zhou, Z. Establishment of bioprocess for synthesis of nicotinamide by recombinant Escherichia coli expressing high-molecular-mass nitrile hydratase. Appl. Biochem. Biotechnol. 182, 1458–1466 (2017).

    Article  Google Scholar 

  137. Deng, M. D. et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab. Eng. 7, 201–214 (2005).

    Article  Google Scholar 

  138. Lomthong, T. et al. Very high gravity (VHG) bioethanol production using modified simultaneous saccharification and fermentation of raw cassava chips with molasses by Kluyveromyces marxianus DMKU-KS07. Waste Biomass Valoriz. 12, 3683–3693 (2021).

    Article  Google Scholar 

  139. Zhao, Y. et al. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb. Biotechnol. 14, 2497–2513 (2021).

    Article  Google Scholar 

  140. Li, L. et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)−2,3-butanediol from lignocellulose-derived sugars. Metab. Eng. 28, 19–27 (2015).

    Article  Google Scholar 

  141. Maina, S. et al. Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or d-2,3-butanediol using bakery waste. Bioresour. Technol. 335, 125155 (2021).

    Article  Google Scholar 

  142. Betterle, N. & Melis, A. Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol. Bioeng. 116, 2041–2051 (2019).

    Article  Google Scholar 

  143. Gascoyne, J. L., Bommareddy, R. R., Heeb, S. & Malys, N. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol. Metab. Eng. 67, 262–276 (2021).

    Article  Google Scholar 

  144. Zheng, Z. Y. et al. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. Prikl. Biokhim. Mikrobiol. 50, 44–51 (2014).

    Google Scholar 

  145. Chen, G. et al. Pullulan production from synthetic medium by a new mutant of Aureobasidium pullulans. Prep. Biochem. Biotechnol. 47, 963–969 (2017).

    Article  Google Scholar 

  146. Liu, M. et al. Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl. Microbiol. Biotechnol. 102, 1155–1165 (2018).

    Article  Google Scholar 

  147. Amanullah, A., Satti, S. & Nienow, A. W. Enhancing xanthan fermentations by different modes of glucose feeding. Biotechnol. Prog. 14, 265–269 (1998).

    Article  Google Scholar 

  148. Liu, X. et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat. Commun. 9, 448 (2018).

    Article  Google Scholar 

  149. Niu, W., Kramer, L., Mueller, J., Liu, K. & Guo, J. Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metab. Eng. Commun. 8, e00082 (2019). This study reports an alternative biosynthetic pathway for 1,2-propanediol production that does not generate methylglyoxal, a cytotoxic intermediate of the conventionally used biosynthesis pathway.

    Article  Google Scholar 

  150. Zhang, J. et al. Sesquiterpene synthase engineering and targeted engineering of alpha-santalene overproduction in Escherichia coli. J. Agric. Food Chem. 70, 5377–5385 (2022).

    Article  Google Scholar 

  151. Zhao, S. et al. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng. 28, 43–53 (2015).

    Article  Google Scholar 

  152. Zhao, X. R., Choi, K. R. & Lee, S. Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1, 720–728 (2018).

    Article  Google Scholar 

  153. Li, Y. W. et al. YALIcloneNHEJ: an efficient modular cloning toolkit for NHEJ integration of multigene pathway and terpenoid production in Yarrowia lipolytica. Front. Bioeng. Biotechnol. 9, 816980 (2021).

    Article  Google Scholar 

  154. Li, Z., Wang, X. & Zhang, H. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metab. Eng. 54, 1–11 (2019).

    Article  Google Scholar 

  155. Nakano, S., Fukaya, M. & Horinouchi, S. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Appl. Env. Microbiol. 72, 497–505 (2006).

    Article  Google Scholar 

  156. Chen, F., Feng, X., Xu, H., Zhang, D. & Ouyang, P. Propionic acid production in a plant fibrous-bed bioreactor with immobilized Propionibacterium freudenreichii CCTCC M207015. J. Biotechnol. 164, 202–210 (2012).

    Article  Google Scholar 

  157. Hoshino, Y. et al. Stereospecific linalool production utilizing two-phase cultivation system in Pantoea ananatis. J. Biotechnol. 324, 21–27 (2020).

    Article  Google Scholar 

  158. Ignea, C. et al. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate. Nat. Commun. 10, 3799 (2019). This study reports a synthetic biosynthetic pathway involving nerol pyrophosphate to streamline orthogonal production of monoterpenoids without compromising endogenous metabolism using geranyl pyrophosphate.

    Article  Google Scholar 

  159. Connor, M. R., Cann, A. F. & Liao, J. C. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86, 1155–1164 (2010).

    Article  Google Scholar 

  160. Jang, Y. S. et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3, e00314-12 (2012).

    Article  Google Scholar 

  161. Xu, S., Wang, X., Du, G., Zhou, J. & Chen, J. Enhanced production of l-sorbose from d-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb. Cell Fact. 13, 146 (2014).

    Article  Google Scholar 

  162. Saez-Saez, J. et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metab. Eng. 62, 51–61 (2020).

    Article  Google Scholar 

  163. Xu, Y., Zhou, Y., Cao, W. & Liu, H. Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux. ACS Synth. Biol. 9, 1418–1425 (2020).

    Article  Google Scholar 

  164. Jia, H. et al. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae. Biochem. Eng. J. 164, 107768 (2020).

    Article  Google Scholar 

  165. Yang, P. et al. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Metab. Eng. 43, 21–28 (2017).

    Article  Google Scholar 

  166. Choi, Y. J., Park, J. H., Kim, T. Y. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab. Eng. 14, 477–486 (2012).

    Article  Google Scholar 

  167. Ma, W. et al. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Microb. Cell Fact. 18, 1 (2019).

    Article  Google Scholar 

  168. Lee, Y. G. & Seo, J. H. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae. Biotechnol. Biofuels 12, 204 (2019).

    Article  Google Scholar 

  169. Kim, T. S. et al. Overcoming NADPH product inhibition improves d-sorbitol conversion to l-sorbose. Sci. Rep. 9, 815 (2019).

    Article  Google Scholar 

  170. Jiang, G., Yao, M., Wang, Y., Xiao, W. & Yuan, Y. A “push–pull–restrain” strategy to improve citronellol production in Saccharomyces cerevisiae. Metab. Eng. 66, 51–59 (2021).

    Article  Google Scholar 

  171. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  Google Scholar 

  172. Wang, Y., Heermann, R. & Jung, K. CipA and CipB as scaffolds to organize proteins into crystalline inclusions. ACS Synth. Biol. 6, 826–836 (2017).

    Article  Google Scholar 

  173. Eichenberger, M. et al. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab. Eng. 39, 80–89 (2017).

    Article  Google Scholar 

  174. Ignea, C., Pontini, M., Maffei, M. E., Makris, A. M. & Kampranis, S. C. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth. Biol. 3, 298–306 (2014).

    Article  Google Scholar 

  175. Peng, B., Plan, M. R., Carpenter, A., Nielsen, L. K. & Vickers, C. E. Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast. Biotechnol. Biofuels 10, 43 (2017).

    Article  Google Scholar 

  176. Gupta, A., Reizman, I. M., Reisch, C. R. & Prather, K. L. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat. Biotechnol. 35, 273–279 (2017).

    Article  Google Scholar 

  177. Wu, Y. et al. Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose. Metab. Eng. 39, 1–8 (2017).

    Article  Google Scholar 

  178. Kataoka, N. et al. Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH. Biosci. Biotechnol. Biochem. 78, 695–700 (2014).

    Article  Google Scholar 

  179. Alonso-Gutierrez, J. et al. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab. Eng. 28, 123–133 (2015).

    Article  Google Scholar 

  180. Manjula Rao, Y. & Sureshkumar, G. Direct biosynthesis of ascorbic acid from glucose by Xanthomonas campestris through induced free-radicals. Biotechnol. Lett. 22, 407–411 (2000).

    Article  Google Scholar 

  181. Webb, J. P. et al. Efficient bio-production of citramalate using an engineered Escherichia coli strain. Microbiology 164, 133–141 (2018).

    Article  Google Scholar 

  182. Wu, J., Zhang, X., Zhou, J. & Dong, M. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Bioresour. Technol. 218, 999–1007 (2016).

    Article  Google Scholar 

  183. Gao, M. et al. Efficient endo-beta-1,3-glucanase expression in Pichia pastoris for co-culture with Agrobacterium sp. for direct curdlan oligosaccharide production. Int. J. Biol. Macromol. 182, 1611–1617 (2021).

    Article  Google Scholar 

  184. Inokuma, K., Liao, J. C., Okamoto, M. & Hanai, T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J. Biosci. Bioeng. 110, 696–701 (2010).

    Article  Google Scholar 

  185. Li, N. et al. Integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface. J. Agric. Food Chem. 64, 6179–6187 (2016).

    Article  Google Scholar 

  186. Whittaker, J. A., Johnson, R. I., Finnigan, T. J. A., Avery, S. V. & Dyer, P. S. in Grand Challenges in Fungal Biotechnology (ed. Nevalainen, H.) 59–79 (Springer, 2020).

  187. Jang, W. D., Kim, G. B., Kim, Y. & Lee, S. Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Curr. Opin. Biotechnol. 73, 101–107 (2022).

    Article  Google Scholar 

  188. Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Machine learning applications in systems metabolic engineering. Curr. Opin. Biotechnol. 64, 1–9 (2020).

    Article  Google Scholar 

  189. Otero-Muras, I. & Carbonell, P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metab. Eng. 63, 61–80 (2021).

    Article  Google Scholar 

  190. Zhang, J. et al. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr. Opin. Biotechnol. 67, 88–98 (2021).

    Article  Google Scholar 

  191. Pantoja Angles, A., Valle-Perez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).

    Article  Google Scholar 

  192. Arnolds, K. L. et al. Biotechnology for secure biocontainment designs in an emerging bioeconomy. Curr. Opin. Biotechnol. 71, 25–31 (2021).

    Article  Google Scholar 

  193. Gao, C. et al. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat. Commun. 10, 3751 (2019).

    Article  Google Scholar 

  194. Roenneke, B. et al. Production of the compatible solute alpha-d-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Microb. Cell Fact. 17, 94 (2018).

    Article  Google Scholar 

  195. Bang, H. B., Lee, K., Lee, Y. J. & Jeong, K. J. High-level production of trans-cinnamic acid by fed-batch cultivation of Escherichia coli. Process. Biochem. 68, 30–36 (2018).

    Article  Google Scholar 

  196. Zha, W. et al. Reconstruction of the biosynthetic pathway of santalols under control of the GAL regulatory system in yeast. ACS Synth. Biol. 9, 449–456 (2020).

    Article  Google Scholar 

  197. Wang, C., Park, J. E., Choi, E. S. & Kim, S. W. Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway — application of PgpB and YbjG phosphatases. Biotechnol. J. 11, 1291–1297 (2016).

    Article  Google Scholar 

  198. Hasegawa, S., Tanaka, Y., Suda, M., Jojima, T. & Inui, M. Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Appl. Environ. Microbiol. 83, e02638-16 (2017).

    Article  Google Scholar 

  199. Rhodes, R. A. et al. Production of fumaric acid in 20-liter fermentors. Appl. Microbiol. 10, 9–15 (1962).

    Article  Google Scholar 

  200. Tai, Y. S., Xiong, M. & Zhang, K. Engineered biosynthesis of medium-chain esters in Escherichia coli. Metab. Eng. 27, 20–28 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperative Research Program for Agriculture Science and Technology Development (project number PJ01577901) from the Rural Development Administration, Republic of Korea, and also by the ‘Development of platform technologies of microbial cell factories for the next-generation biorefineries’ (project number 2022M3J5A1056117) from the National Research Foundation supported by the Korean Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Contributions

K.R.C. researched data for the article and contributed to the conceptualization, writing, reviewing and editing of the manuscript. S.Y.L. contributed to the conceptualization, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Sang Yup Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Sotirios Kampranis, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K.R., Lee, S.Y. Systems metabolic engineering of microorganisms for food and cosmetics production. Nat Rev Bioeng 1, 832–857 (2023). https://doi.org/10.1038/s44222-023-00076-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00076-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research