Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Future increases in Amazonia water stress from CO2 physiology and deforestation

Abstract

Several different drivers are contributing to climate change within the Amazon basin, including forcing from greenhouse gases and aerosols, plant physiology responses to rising CO2, and deforestation. Attribution among these drivers has not been quantified for Shared Socioeconomic Pathway (SSP) climate simulations. Here we identify the contribution of CO2 physiology and deforestation to future hydroclimate change in the Amazon basin by combining information from four experiments and eight different Earth system models in Coupled Model Intercomparison Project Phase 6. Together, forcing from CO2 physiology and deforestation account for about 44% of the projected annual precipitation decline, 48% of surface relative humidity decline and 11% of warming over the Amazon basin by 2100 for SSP3-7.0. Other Coupled Model Intercomparison Project Phase 6 SSP simulations have similar contributions from the two drivers. Insight from our attribution analysis can aid in identifying research priorities aimed at reducing uncertainty in future projections of water availability, carbon dynamics and wildfire risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transient response of annual mean precipitation, surface RH and air temperature to CO2 physiology and deforestation in the Amazon basin.
Fig. 2: Spatial distribution of the mean annual precipitation response to forcing from CO2 physiology and deforestation.
Fig. 3: Changes in CO2 concentrations and deforestation fraction of the Amazon basin in SSPs.
Fig. 4: Climate contributions of CO2 physiology and deforestation to future changes in precipitation over the Amazon basin.
Fig. 5: Conceptual diagram of the mechanisms by which CO2 physiology and deforestation influence climate change in the Amazon basin.

Similar content being viewed by others

Data availability

All CMIP6 simulations used in this study are publicly available at https://esgf-node.llnl.gov/projects/cmip6/. Atmospheric CO2 concentrations for future SSP scenarios were downloaded from https://esgf-node.llnl.gov/projects/input4mips/. Future land use datasets LUHv2f were downloaded from https://luh.umd.edu/data.shtml. Data supporting each major figure can be accessed from ref. 73. Raw data underlying figures from Figs. 1–4 are available at https://doi.org/10.6084/m9.figshare.23826222.

Code availability

All computer codes used in this study are available via GitHub at https://github.com/YueLi92/Contributions_CO2Phys_Def_SSP.

References

  1. Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aragão, L. E. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 1–12 (2018).

    Article  Google Scholar 

  5. Orlowsky, B. & Seneviratne, S. I. Elusive drought: uncertainty in observed trends and short-and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 17, 1765–1781 (2013).

    Article  Google Scholar 

  6. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article  CAS  Google Scholar 

  7. Cook, B. I. et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  8. Parsons, L. A. Implications of CMIP6 projected drying trends for 21st century Amazonian drought risk. Earth Future 8, e2020EF001608 (2020).

    Article  Google Scholar 

  9. Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).

    Article  Google Scholar 

  10. Fan, X., Miao, C., Duan, Q., Shen, C. & Wu, Y. Future climate change hotspots under different 21st century warming scenarios. Earth Future 9, e2021EF002027 (2021).

    Article  Google Scholar 

  11. Li, H. et al. Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios. Environ. Res. Lett. 16, 114004 (2021).

    Article  Google Scholar 

  12. Zhao, T. & Dai, A. CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. J. Clim. 35, 897–921 (2022).

    Google Scholar 

  13. O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  14. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  15. Boit, A. et al. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America. Glob. Chang. Biol. 22, 3689–3701 (2016).

    Article  PubMed  Google Scholar 

  16. Koch, A. & Kaplan, J. O. Tropical forest restoration under future climate change. Nat. Clim. Change 12, 279–283 (2022).

    Article  Google Scholar 

  17. Munia, H. A. et al. Future transboundary water stress and its drivers under climate change: a global study. Earth Future 8, e2019EF001321 (2020).

    Article  Google Scholar 

  18. Park, C. Y. et al. How Will deforestation and vegetation degradation affect global fire activity? Earth Future 9, e2020EF001786 (2021).

    Article  Google Scholar 

  19. Silva, M. V. M. D. et al. Naturalized streamflows and Affluent Natural Energy projections for the Brazilian hydropower sector for the SSP2-4.5 and SSP5-8.5 scenarios of the CMIP6. J. Water Clim. Chang. 13, 315–336 (2021).

    Article  Google Scholar 

  20. Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett. 33, L03502 (2006).

    Article  Google Scholar 

  21. Chen, Y., Langenbrunner, B. & Randerson, J. T. Future drying in central america and northern south america linked with atlantic meridional overturning circulation. Geophys. Res. Lett. 45, 9226–9235 (2018).

    Article  Google Scholar 

  22. Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 3172–13177 (2015).

    Article  Google Scholar 

  23. Boisier, J. P., Ciais, P., Ducharne, A. & Guimberteau, M. Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat. Clim. Change 5, 656–660 (2015).

  24. Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).

  26. Richardson, T. B. et al. Carbon dioxide physiological forcing dominates projected eastern Amazonian drying. Geophys. Res. Lett. 45, 2815–2825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, S., Yu, B., Lintner, B., Findell, K. L. & Zhang, Y. Projected increase in global runoff dominated by land surface changes. Nat. Clim. Change 13, 442–449 (2023).

  28. Boysen, L. R. et al. Global climate response to idealized deforestation in CMIP6 models. Biogeosciences 17, 5615–5638 (2020).

    Article  CAS  Google Scholar 

  29. Luo, X. et al. The biophysical impacts of deforestation on precipitation: results from the CMIP6 model intercomparison. J. Clim. 35, 3293–3311 (2022).

    Article  Google Scholar 

  30. Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 11, 491–508 (2020).

    Article  Google Scholar 

  31. Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marengo, J. A. et al. Changes in climate and land use over the Amazon region: current and future variability and trends. Front. Earth Sci. 6, 228 (2018).

    Article  Google Scholar 

  33. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  34. He, J. & Soden, B. J. A re-examination of the projected subtropical precipitation decline. Nat. Clim. Change 7, 53–57 (2017).

    Article  Google Scholar 

  35. Langenbrunner, B., Pritchard, M. S., Kooperman, G. J. & Randerson, J. T. Why does Amazon precipitation decrease when tropical forests respond to increasing CO2? Earth Future 7, 450–468 (2019).

    Article  Google Scholar 

  36. Khanna, J., Medvigy, D., Fisch, G. & de Araujo Tiburtino Neves, T. T. Regional hydroclimatic variability due to contemporary deforestation in southern Amazonia and associated boundary layer characteristics. J. Geophys. Res. Atmos. 123, 3993–4014 (2018).

    Article  Google Scholar 

  37. Maeda, E. E. et al. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl Acad. Sci. USA 118, e2023787118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 1–7 (2021).

    Article  Google Scholar 

  39. Spracklen, D. V. & Garcia‐Carreras, L. J. G. R. L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).

    Article  Google Scholar 

  40. Sampaio, G. et al. CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon. Biogeosciences 18, 2511–2525 (2021).

    Article  CAS  Google Scholar 

  41. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  42. Jones, C. D. et al. C4MIP—the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

    Article  CAS  Google Scholar 

  43. Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Article  Google Scholar 

  44. IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 3–32 (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  45. Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

  47. Cheng, L. et al. Past and future ocean warming. Nat. Rev. Earth Environ. 3, 776–794 (2022).

    Article  Google Scholar 

  48. Stickler, C. M. et al. The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region. Glob. Change Biol. 15, 2803–2824 (2009).

    Article  Google Scholar 

  49. Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 1–10 (2017).

    Article  Google Scholar 

  50. Norby, R. J. et al. Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2008).

    Article  Google Scholar 

  52. Baker, J. C. A. & Spracklen, D. V. Divergent representation of precipitation recycling in the Amazon and the Congo in CMIP6 models. Geophys. Res. Lett. 49, E2021GL095136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).

    Article  Google Scholar 

  54. Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    Article  Google Scholar 

  56. Ciemer, C., Winkelmann, R., Kurths, J. & Boers, N. Impact of an AMOC weakening on the stability of the southern Amazon rainforest. Eur. Phys. J. Spec. Top. 230, 3065–3073 (2021).

    Article  Google Scholar 

  57. Cai, X. et al. Improving representation of deforestation effects on evapotranspiration in the E3SM land model. J. Adv. Model. Earth Syst. 11, 2412–2427 (2019).

    Article  Google Scholar 

  58. Chen, L. & Dirmeyer, P. A. Reconciling the disagreement between observed and simulated temperature responses to deforestation. Nat. Commun. 11, 1–10 (2020).

    Google Scholar 

  59. Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

  60. Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296–302 (2017).

  61. Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 1–12 (2018).

    Article  CAS  Google Scholar 

  62. Gillet, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

    Article  Google Scholar 

  63. Schulzweida, U. Climate data operators (CDO) user guide (Version 1.9.8). Zenodo https://doi.org/10.5281/zenodo.3539275 (2019).

  64. Wu, T. et al. The Beijing Climate Center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).

    Article  Google Scholar 

  65. Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5. 0.3). Geosci. Model Dev. 12, 4823–4873 (2019).

    Article  CAS  Google Scholar 

  66. Danabasoglu, G. et al. The Community Earth System Model version 2 (CESM2). J. Adv. Model Earth Syst. 12, e2019MS001916 (2020).

    Article  Google Scholar 

  67. Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model Earth Syst. 11, 4182–4227 (2019).

    Article  Google Scholar 

  68. Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model Earth Syst. 12, 1–52 (2020).

    Article  Google Scholar 

  69. Kelley, M. et al. GISS‐E2. 1: configurations and climatology. J. Adv. Model Earth Syst. 12, e2019MS002025 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sellar, A. A. et al. Implementation of UK Earth system models for CMIP6. J. Adv. Model Earth Syst. 12, e2019MS001946 (2020).

    Article  Google Scholar 

  71. Mauritsen, T. et al. Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1. 2) and its response to increasing CO2. J. Adv. Model Earth Syst. 11, 998–1038 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article  CAS  Google Scholar 

  73. Li, Y. et al. Raw data underlying figures from Fig. 1 to Fig. 4, Figshare, https://doi.org/10.6084/m9.figshare.23826222 (2023).

Download references

Acknowledgements

Y.L. and J.T.R. acknowledge support from the US Department of Energy (DOE) Office of Science, Biological and Environmental Research (BER), Earth and Environmental Systems Modeling programme to study dust and fire (DE-SC0021302) and the RUBISCO Scientific Focus Area. J.T.R. and D.C.M. received funding support from NASA’s SERVIR and MAP research programmes. A.L.S.S. recognizes funding support from DOE BER Regional and Global Model Analysis programme (DE-SC0021209). The funders had no role in study design, data collection and analysis, the decision to publish, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and J.T.R. designed the research; Y.L. performed data analysis and figure illustrations; Y.L. and J.T.R. drafted the manuscript, with discussions and contributions from J.C.A.B., P.M.B., F.M.H., D.M.L., D.C.M., A.L.S.S. and M.R.U.; all authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Yue Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks David Lapola, Markus Reichstein, Corey Lesk and Alexander Winkler for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Raw data for Fig. 1.

Source Data Fig. 2

Raw data for Fig. 2.

Source Data Fig. 3

Raw data for Fig. 3.

Source Data Fig. 4

Raw data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Baker, J.C.A., Brando, P.M. et al. Future increases in Amazonia water stress from CO2 physiology and deforestation. Nat Water 1, 769–777 (2023). https://doi.org/10.1038/s44221-023-00128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00128-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing