Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The dynamic process of hyperfocusing and hyperfiltering in schizophrenia

Abstract

Schizophrenia is typically characterized by impairments in selective attention. However, recent evidence seems to counterintuitively show that people with schizophrenia (PSZ) exhibit superior attentional selection compared with healthy control subjects, an intriguing phenomenon known as hyperfocusing. Such supranormal attention is believed to underlie multiple kinds of cognitive impairments observed in PSZ, and thus exploring this remarkable phenomenon holds promise for inspiring innovative treatments aimed at addressing cognitive deficits in PSZ. Here, in this case–control study comprising four independent experiments, we aimed to investigate two central questions regarding this phenomenon. First, we sought to investigate whether hyperfocusing on the relevant information would be accompanied with hyperfiltering on irrelevant information, by adopting tasks wherein participants were asked to focus on one feature (that is, color) of an object while ignoring another (that is, shape). Another important objective is to understand how such supranormal attention unfolds over the course of cognitive processing by manipulating the time course. Our research reveals that hyperfocusing on relevant information coincides with greater filtering (that is, hyperfiltering) of irrelevant information from the same object. Additionally, our research shows that hyperfocusing develops through continuously enhancing the relevant information and progressively weakening the irrelevant information over time. Crucially, these key findings are replicated and generalized across different designs and research paradigms, underscoring the robustness and replicability of our study. These convincing findings extend our understanding of cognitive mechanisms behind hyperfocusing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Task procedure of experiment 1a.
Fig. 2: Results of experiments 1a and 1b.
Fig. 3: Results of the 1,200 ms and 500 ms conditions in experiment 2.
Fig. 4: Comparisons between the 500 ms and 1,200 ms SOA conditions in experiments 1a,b and 2.
Fig. 5: Procedures and results of experiment 3.

Similar content being viewed by others

Data availability

The participants did not consent to the sharing of the raw data to the public. However, deidentified individual participant data can be found on Open Science Framework (https://osf.io/y76xz/). Source data are provided with this paper.

Code availability

All data analyses used readily available programs (for example, Microsoft Excel).

References

  1. Kahn, R. S. & Keefe, R. S. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry 70, 1107–1112 (2013).

    Article  PubMed  Google Scholar 

  2. Guo, J. Y., Ragland, J. D. & Carter, C. S. Memory and cognition in schizophrenia. Mol. Psychiatry 24, 633–642 (2019).

    Article  PubMed  Google Scholar 

  3. Minzenberg, M. J. & Carter, C. S. Developing treatments for impaired cognition in schizophrenia. Trends Cogn. Sci. 16, 35–42 (2012).

    Article  PubMed  Google Scholar 

  4. Barch, D. M. & Ceaser, A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn. Sci. 16, 27–34 (2012).

    Article  PubMed  Google Scholar 

  5. Kreither, J. et al. Electrophysiological evidence for hyperfocusing of spatial attention in schizophrenia. J. Neurosci. 37, 3813–3823 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luck, S. J., Hahn, B., Leonard, C. J. & Gold, J. M. The hyperfocusing hypothesis: a new account of cognitive dysfunction in schizophrenia. Schizophr Bull. 45, 991–1000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leonard, C. J. et al. Toward the neural mechanisms of reduced working memory capacity in schizophrenia. Cereb. Cortex 23, 1582–1592 (2013).

    Article  PubMed  Google Scholar 

  8. Luria, R., Balaban, H., Awh, E. & Vogel, E. K. The contralateral delay activity as a neural measure of visual working memory. Neurosci. Biobehav. Rev. 62, 100–108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mayer, J. S., Fukuda, K., Vogel, E. K. & Park, S. Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia. PLoS ONE 7, e48586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hahn, B. et al. Visuospatial attention in schizophrenia: deficits in broad monitoring. J. Abnorm. Psychol. 121, 119–128 (2012).

    Article  PubMed  Google Scholar 

  11. Gray, B. E. et al. Relationships between divided attention and working memory impairment in people with schizophrenia. Schizophr. Bull. 40, 1462–1471 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leonard, C. J., Robinson, B. M., Hahn, B., Luck, S. J. & Gold, J. M. Altered spatial profile of distraction in people with schizophrenia. J. Abnorm. Psychol. 126, 1077–1086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gold, J. M. et al. People with schizophrenia show enhanced cognitive costs of maintaining a single item in working memory. Psychol. Med. 50, 867–873 (2020).

    Article  PubMed  Google Scholar 

  14. Leonard, C. J., Robinson, B. M., Hahn, B., Gold, J. M. & Luck, S. J. Increased influence of a previously attended feature in people with schizophrenia. J. Abnorm. Psychol. 129, 305–311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luck, S. J. et al. Hyperfocusing in schizophrenia: evidence from interactions between working memory and eye movements. J. Abnorm. Psychol. 123, 783–795 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bansal, S. et al. Oculomotor inhibition and location priming in schizophrenia. J. Abnorm. Psychol. 130, 651–664 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sawaki, R. et al. Hyperfocusing of attention on goal-related information in schizophrenia: evidence from electrophysiology. J. Abnorm. Psychol. 126, 106–116 (2017).

    Article  PubMed  Google Scholar 

  18. Hahn, B., Harvey, A. N., Gold, J. M., Ross, T. J. & Stein, E. A. Load-dependent hyperdeactivation of the default mode network in people with schizophrenia. Schizophr. Res. 185, 190–196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hahn, B., Robinson, B. M., Leonard, C. J., Luck, S. J. & Gold, J. M. Posterior parietal cortex dysfunction is central to working memory storage and broad cognitive deficits in schizophrenia. J. Neurosci. 38, 8378–8387 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carrasco, M. Visual attention: the past 25 years. Vision Res. 51, 1484–1525 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eriksen, C. W. & St James, J. D. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40, 225–240 (1986).

    Article  PubMed  Google Scholar 

  22. Eriksen, C. W. & Yeh, Y. Y. Allocation of attention in the visual field. J. Exp. Psychol. Hum. Percept. Perform. 11, 583–597 (1985).

    Article  PubMed  Google Scholar 

  23. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  PubMed  Google Scholar 

  24. Hahn, B. et al. Impaired filtering and hyperfocusing: neural evidence for distinct selective attention abnormalities in people with schizophrenia. Cereb. Cortex 32, 1950–1964 (2022).

    Article  PubMed  Google Scholar 

  25. Wyble, B. et al. Understanding visual attention with RAGNAROC: a reflexive attention gradient through neural AttRactOr competition. Psychol. Rev. 127, 1163–1198 (2020).

    Article  PubMed  Google Scholar 

  26. Soto, D., Hodsoll, J., Rotshtein, P. & Humphreys, G. W. Automatic guidance of attention from working memory. Trends Cogn. Sci. 12, 342–348 (2008).

    Article  PubMed  Google Scholar 

  27. Olivers, C. N., Peters, J., Houtkamp, R. & Roelfsema, P. R. Different states in visual working memory: when it guides attention and when it does not. Trends Cogn. Sci. 15, 327–334 (2011).

    PubMed  Google Scholar 

  28. Dowd, E. W., Pearson, J. M. & Egner, T. Decoding working memory content from attentional biases. Psychon. Bull. Rev. 24, 1252–1260 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mallett, R. & Lewis-Peacock, J. A. Behavioral decoding of working memory items inside and outside the focus of attention. Ann. N. Y. Acad. Sci. 1424, 256–267 (2018).

    Article  PubMed  Google Scholar 

  30. Fu, Y., Zhou, Y., Zhou, J., Shen, M. & Chen, H. More attention with less working memory: the active inhibition of attended but outdated information. Sci. Adv. 7, eabj4985 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hollingworth, A., Matsukura, M. & Luck, S. J. Visual working memory modulates rapid eye movements to simple onset targets. Psychol. Sci. 24, 790–796 (2013).

    Article  PubMed  Google Scholar 

  32. Gao, Z. et al. Object-based encoding in visual working memory: evidence from memory-driven attentional capture. Sci. Rep. 9, 22822 (2016).

    Article  Google Scholar 

  33. Soto, D. & Humphreys, G. W. Automatic selection of irrelevant object features through working memory: evidence for top-down attentional capture. Exp. Psychol. 56, 165–172 (2009).

    Article  PubMed  Google Scholar 

  34. Ecker, U. K. H., Maybery, M. & Zimmer, H. D. Binding of intrinsic and extrinsic features in working memory. J. Exp. Psychol. Gen. 142, 218–234 (2013).

    Article  PubMed  Google Scholar 

  35. Gao, T., Gao, Z., Li, J., Sun, Z. & Shen, M. The perceptual root of object-based storage: an interactive model of perception and visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 37, 1803–1823 (2011).

    Article  PubMed  Google Scholar 

  36. Hyun, J. S., Woodman, G. F., Vogel, E. K., Hollingworth, A. & Luck, S. J. The comparison of visual working memory representations with perceptual inputs. J. Exp. Psychol. Hum. Percept. Perform. 35, 1140–1160 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Coch, D., Sanders, L. D. & Neville, H. J. An event-related potential study of selective auditory attention in children and adults. J. Cogn. Neurosci. 17, 605–622 (2005).

    Article  PubMed  Google Scholar 

  38. Fu, Y. et al. Attention with or without working memory: mnemonic reselection of attended information. Trends Cogn. Sci. 27, 1111–1122 (2023).

    Article  PubMed  Google Scholar 

  39. van Ede, F. & Nobre, A. C. Turning attention inside out: how working memory serves behavior. Annu. Rev. Psychol. 74, 137–165 (2023).

    Article  PubMed  Google Scholar 

  40. Lucas, C. G., Bridgers, S., Griffiths, T. L. & Gopnik, A. When children are better (or at least more open-minded) learners than adults: developmental differences in learning the forms of causal relationships. Cognition 131, 284–299 (2014).

    Article  PubMed  Google Scholar 

  41. Gualtieri, S. & Finn, A. S. The sweet spot: when children’s developing abilities, brains, and knowledge make them better learners than adults. Perspect. Psychol. Sci. 17, 1322–1338 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schneider, S. J. Selective attention in schizophrenia. J. Abnorm. Psychol. 85, 167–173 (1976).

    Article  PubMed  Google Scholar 

  43. Wishner, J. & Wahl, O. Dichotic listening in schizophrenia. J. Consult. Clin. Psychol. 42, 538–546 (1974).

    Article  PubMed  Google Scholar 

  44. Wahl, O. Schizophrenic patterns of dichotic shadowing performance. J. Nerv. Ment. Dis. l63, 401–407 (1976).

    Article  PubMed  Google Scholar 

  45. Hahn, B. et al. Failure of schizophrenia patients to overcome salient distractors during working memory encoding. Biol. Psychiatry 68, 603–609 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Erickson, M. A. et al. Impaired working memory capacity is not caused by failures of selective attention in schizophrenia. Schizophr. Bull. 41, 366–373 (2015).

    Article  PubMed  Google Scholar 

  47. Luck, S. J., Leonard, C. J., Hahn, B. & Gold, J. M. Is attentional filtering impaired in schizophrenia? Schizophr. Bull. 45, 1001–1011 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Woodman, G. F. & Luck, S. J. Do the contents of visual working memory automatically influence attentional selection during visual search? J. Exp. Psychol. Hum. Percept. Perform. 33, 363–377 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article  PubMed  Google Scholar 

  50. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines (World Health Organization, 1992).

  51. Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

    Article  PubMed  Google Scholar 

  52. Cooper, J. E. & Sartorius, N. Mental Disorders in China: Results of the National Epidemiological Survey in 12 Areas (Glasgow Gaskell Press, 1996).

  53. Leucht, S., Samara, M., Heres, S. & Davis, J. M. Dose equivalents for antipsychotic drugs: the DDD method. Schizophr. Bull. 42, S90–S94 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  PubMed  Google Scholar 

  55. Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36, 1–16 (2007).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Innovation 2030 ‘Brain Science and Brain-like Research’ major project (no. 2022ZD0210800) awarded to H.C. from the Ministry of Science and Technology of the People’s Republic of China, the National Natural Science Foundation of China (no. 32171046 awarded to H.C. and no. 32071044 awarded to M.S.), the Emerging Enhancement Technology under Perspective of Humanistic Philosophy from the National Office for Philosophy and Social Science (no. 20&ZD045) awarded to H.C and the Ningbo Top Medical and Health Research Program (no. 2022030410) from the Health Commission of Ningbo awarded to D.Z. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and H.C. had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: M.S. and H.C. Acquisition, analysis or interpretation of data: J.L, B.-l.Z., D.Z., Y.F., X.H., L.C., H.L., J.Z., E.T., Y.L., C.G., M.S. and H.C. Drafting of the paper: J.L., Y.F. and H.C. Critical revision of the paper for important intellectual content: all authors. Statistical analysis: J.L., L.C., E.T. and Y.L. Obtained funding: M.S. and H.C. Administrative, technical or material support: B.-l.Z., D.Z. and H.C. Supervision: M.S. and H.C.

Corresponding authors

Correspondence to Mowei Shen or Hui Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks James Gold, Carly Leonard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, results for experiment 3 and Fig. 1.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data. Experiments 1a and 1b. Source Data Fig. 3 Statistical source data. Experiment 2. Source Data Fig. 4 Statistical source data. Experiments 1a and 1b and 2. Source Data Fig. 5 Statistical source data. Experiment 3. Source Data Table 1 Statistical source data. Experiment 1a demographics, experiment 1b demographics, experiment 2 demographics and experiment 3 demographics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhong, Bl., Zhou, D. et al. The dynamic process of hyperfocusing and hyperfiltering in schizophrenia. Nat. Mental Health 2, 367–378 (2024). https://doi.org/10.1038/s44220-024-00211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00211-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing