Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2

Abstract

Molybdenum disulfide (MoS2) is an extensively studied two-dimensional layered semiconductor with interesting electronic and optical properties. Monolayer MoS2 features strong light–matter interactions due to its direct bandgap, whereas multilayer MoS2 is an indirect bandgap semiconductor and optically inactive. The molecular intercalation of MoS2 with organic cations offers a strategy to decouple the interlayer interaction, producing a bulk monolayer material, but is usually accompanied by a heavy electron doping effect that can diminish the intrinsic semiconductor properties or induce a phase transition. Here we report a chemical-dedoping strategy to tailor electron density in molecular-intercalated MoS2, thereby retaining monolayer semiconductor properties. By introducing a poly(vinylpyrrolidone)–bromine complex during the electrochemical intercalation process, we show that bulk monolayer MoS2 thin film can be produced with decoupled interlayer interaction and reduced electron concentration. The resulting thin films display strong excitonic emission, 20 and >400 times stronger than the exfoliated monolayer and multilayer material, respectively, high valley polarization and an enhanced photoelectric response. Our study opens a scalable path to large-area bulk monolayer MoS2 thin films with monolayer-like optical properties and greatly increased optical cross-sections, presenting an attractive material platform for both fundamental photophysics studies and scalable optoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of molecular intercalation and electron doping control.
Fig. 2: Structural characterizations.
Fig. 3: Electron dedoping mechanism of BM-MoS2 film with PVP-Br2 treatment.
Fig. 4: Spectroscopy of BM-MoS2 with controllable electron doping.
Fig. 5: CPL measurements.
Fig. 6: Optoelectronic properties of intercalated MoS2 thin-film device.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Source data for Figs. 2c, 3, 4, 5b–d and 6b–d are available from Figshare: https://doi.org/10.6084/m9.figshare.22827920. Source data are provided with this paper.

References

  1. Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  PubMed  Google Scholar 

  2. Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

    Article  PubMed  Google Scholar 

  3. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Li, D. et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat. Commun. 6, 7509 (2015).

    Article  PubMed  Google Scholar 

  5. Tan, Q. et al. Layer-engineered interlayer excitons. Sci. Adv. 7, eabh0863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  7. Zeng, H. et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  PubMed  Google Scholar 

  9. Wang, Q. et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy. ACS Nano 7, 11087–11093 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Klein, J. et al. Electric-field switchable second-harmonic generation in bilayer MoS2 by inversion symmetry breaking. Nano Lett. 17, 392–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Komsa, H.-P. & Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 86, 241201 (2012).

    Article  Google Scholar 

  16. Yuan, L. et al. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 8, 3371–3379 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. Valleytronics. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Drüppel, M., Deilmann, T., Krüger, P. & Rohlfing, M. Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun. 8, 2117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    Article  CAS  Google Scholar 

  23. Zhang, H. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 18, 1425–1430 (2022).

    Article  CAS  Google Scholar 

  24. Zhang, H. et al. Enhancement of superconductivity in organic–inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).

    Article  CAS  Google Scholar 

  25. Zhou, J. et al. Heat conductor–insulator transition in electrochemically controlled hybrid superlattices. Nano Lett. 22, 5443–5450 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, Y. et al. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2023).

    Article  Google Scholar 

  27. Wang, Z., Li, R., Su, C. & Loh, K. P. Intercalated phases of transition metal dichalcogenides. SmartMat 1, e1013 (2020).

    Article  Google Scholar 

  28. Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Pereira, J. M. et al. Percolating superconductivity in air-stable organic-ion intercalated MoS2. Adv. Funct. Mater. 32, 2208761 (2022).

    Article  CAS  Google Scholar 

  30. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Lakouraj, M. M., Tajbakhsh, M. & Mokhtary, M. Poly (vinylpyrrolidone)–bromine complex; a mild and efficient reagent for selective bromination of alkenes and oxidation of alcohols. J. Chem. Res. 2005, 481–483 (2005).

    Article  Google Scholar 

  32. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt, T., Lischka, K. & Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992).

    Article  CAS  Google Scholar 

  35. Christopher, J. W., Goldberg, B. B. & Swan, A. K. Long tailed trions in monolayer MoS2: temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra. Sci. Rep. 7, 14062 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Q. et al. Recoil effect and photoemission splitting of tions in monolayer MoS2. ACS Nano 11, 10808–10815 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Bhanu, U., Islam, M. R., Tetard, L. & Khondaker, S. I. Photoluminescence quenching in gold–MoS2 hybrid nanoflakes. Sci. Rep. 4, 5575 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, L. et al. Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 111, 126801 (2013).

    Article  PubMed  Google Scholar 

  42. Lu, X. et al. Gate-tunable resonant Raman spectroscopy of bilayer MoS2. Small 13, 1701039 (2017).

    Article  Google Scholar 

  43. Li, Z. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 1151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar, P. et al. Light–matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 17, 182–189 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Dhakal, K. P. et al. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028–13035 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Li, X. et al. Layer-number dependent reflection spectra of MoS2 flakes on SiO2/Si substrate. Opt. Mater. Express 8, 3082–3091 (2018).

    Article  CAS  Google Scholar 

  47. Zhao, Y. et al. Characterization of excitonic nature in Raman spectra using circularly polarized light. ACS Nano 14, 10527–10535 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Electron Imaging Center for NanoMachines (EICN) at the California NanoSystem Institute (CNSI) and the Nanoelectronic Research Facility (NRF) at UCLA for technical support. X.D. acknowledges support from the Office of Naval Research through grant number N00014-22-1-2631. Jingyuan Zhou and D.Z. were supported by the UCLA CNSI Noble Family Innovation Fund. C.W.W. and J.H.K. acknowledge the support from the National Science Foundation, Office of Naval Research and Army Research Office on this study.

Author information

Authors and Affiliations

Authors

Contributions

X.D. and Y.H. conceived the research. B.Z. and Jingyuan Zhou designed the experiments, developed the intercalation and doping control procedure, performed X-ray diffraction characterizations, PL, Raman, reflectance spectroscopy, and analysed the data together. J.H.K. and C.W.W. performed CPL characterizations. L.W. performed AFM characterizations and contributed to discussions. A.Z. performed XPS measurements and Jingxuan Zhou performed HRTEM measurements. D.L. and D.X. contributed to the preparation of solution-processed MoS2 nanosheet thin films. B.H. contributed to some synthetic processes. S.D. and L.H. contributed to the PL characterizations. Y.H. and X.D. supervised the research. B.Z., Jingyuan Zhou and X.D. co-wrote the manuscript with inputs from all the authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yu Huang or Xiangfeng Duan.

Ethics declarations

Competing interests

A provisional patent application on the bulk monolayer materials is expected to be filed by the UCLA technology development group. The authors declare no other competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editor Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13.

Source data

Source Data Fig. 2

Raw data of XRD test.

Source Data Fig. 3

Raw data of PL and XPS.

Source Data Fig. 4

Raw data of PL test for intercalated BM-MoS2 with different amounts of PVP-Br2. Analysis of PL peak intensity and trion spectral weight \({{{I}}}_{{{\rm{X}}}^{-}}/{{{I}}}_{{{\rm{X}}}^{\circ}}\). Analysis of energy splitting and electron density. Raw data of off-resonance PL spectra. Raw data of Raman spectra. Raw data of reflectance spectra.

Source Data Fig. 5

Raw data of CPL spectra. Raw data of angle-dependent PL spectra. Analysis of DOP.

Source Data Fig. 6

Raw data of optoelectronic measurement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zhou, J., Wang, L. et al. A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat. Synth 3, 67–75 (2024). https://doi.org/10.1038/s44160-023-00396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00396-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing